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Summary

This project investigates the use of evolutionary approaches to enable robotic agents to learn their
own physical limitations in a visual navigation task. Within nature, biological agents understand their
own limitations when it comes to crossing complex terrain. By attempting to cross terrain that an
agent is not built for they risk injury or even death. A robot needs to understand its own limitation
if it is to be able to explore complex terrain but not get damaged. One applications of this would be
planetary exploration where robot damage would ruin a cost expensive mission. The project was split
into three parts: Navigation; vision; and the development of the physical robot.

Navigation strategies were developed in a two-dimensional simulation world with procedurally
generated terrain. Simulation takes less time to trial than physical experiments, therefore a proof of
concept could be developed within the time constraints of this project. Environmental hazards were
introduced, such as water, and experimentation into hyper-parameters and algorithm choice allowed
convergence on high fitness models. Agents learned to follow contours in order to minimize energy
consumption and avoid hazardous environments.

Two depth sensors were trialled for visual base navigation. One was using two cameras and the
OpenCV disparity function; the other an off-the-shelf approach with the Xbox Kinect. Stereo imaging
was picked as it best highlighted the environmental attributes that would be relevant for solving the
problem of hazardous terrain representation. The Kinect sensor was the best at finding depth. Further
processing took place to squeeze the depth images into a compressed representation that could be used
in the simulated trained agent model.

The physical robot made use of the visual depth information and neural networks trained in simu-
lation trials which were able to cross the bridge between simulation and the real world (known as the
‘reality gap’). It could predict hazardous terrain for avoidance in an outdoor environment.

The chassis was inspired by how cockroaches cross obstacles, it used Whegs and a bendable back
to improve movement over rocky and outdoor environments. Whegs are a hybrid between wheels and
legs where the cyclic efficiency of the wheel is used, but claw features are added to improve climb like
a leg. The back bending control was learned by the system using a population of hillclimbers evolving
the weights and biases of a neural model.

This project successfully demonstrated that an agent can understand its hazardous environment,
and learn to overcome obstacles.
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1 Introduction

In this project, I have investigated autonomous robotic navigation through localised decisions based
on previous experience. Nearly all organisms are limited at some point when it comes to movement.
For example, an octopus can fit through an aperture that is bigger than its beak [1] and a person can
climb over rocks, but only if they have grip points for hands and feet. These environmental barriers
define constraints to an organism’s ability to traverse across it. When a path looks too arduous, we
will often choose a more accessible route if possible.

These constraints also apply to robots. Consider a Mars Rover over 395 million km away from the
person controlling it. If the Rover were to get stuck, there would be no one to recover it and – as it
takes 181 seconds for a signal to get from Earth to Mars – real-time control is impossible. Therefore, a
robot, like a biological organism, needs a sense of self-preservation thus needs to know its limitations
and not attempt tasks of movement outside these physical constraints [2].

Our agent was set a target location and had to reach it while avoiding hazardous/overly complex
terrain within the environment. Success was defined as whether the agent got there safely, and how
much extra energy was consumed. When deciding on routes, there may be the scenario that all paths
are within the constraints but some are simpler to navigate than others. In this situation, the agent
will need to pick the option which requires the least effort. The best-case scenario for the agent I am
developing is governed by the level of complexity of movement necessary to overcome the obstacle. If
the agent gets stuck it will get no reward; if the agent makes unnecessary movement while moving over
simple terrain, it will get little reward.

I initially explored this problem using simulation, before moving to a robot platform with a back
actuator, stabilizer and neck actuator. The robot needed to learn to use these features to help it
navigate over the landscape. This robot performed this task by using computer vision techniques,
which forms a prediction on the best route to take via movement instructions generated at each move.

2 Professional and Ethical considerations

In line with the BCS Code of Conduct, we must only undertake research within our competency.
The Computer Vision and Acquired Intelligence; and Adaptive Behaviour modules have given me the
relevant knowledge to attempt the task of terrain navigation. In addition to this, the Junior Research
Associate scheme has given me a valuable background in robotics and evolving hardware.

While no ethical approval is needed for this project, there are indisputable risks of dual use
in AI research. However, at the fundamental level that I am working on, I have made a con-
scious decision to prioritise Open Science and all of my code will be publicly available on Github:
https://github.com/shepai/Dissertation.

Because we will train our robot on images of real world environments, we will have to consider
the dangers of people being in view and thus consider the GDPR rules. However, as the resolution
of images will be low, individuals will not be recognisable. Another ethical consideration is the safety
involved in testing as the robot could be a trip hazard. To address this, we will only test the robot in an
environment where it cannot hit people, specifically the safety-netted area of the Future Technologies
Lab.

3 Background Literature

3.1 Robot Locomotion

A standard wheel has low energy consumption due to a single axis continuous rotation; however, it is
limited when climbing over rough terrain. To address this, agents can use legs for example in a hexapod
configuration which is incredibly stable [3]. However, robotic legs require multiple servo motors which
have a high current draw and, due to the need for inverse kinematics [4], require complex control
algorithms.

The ‘Wheg’ design is a wheel-leg hybrid that can traverse more challenging terrain than standard
wheels while maintaining low energy consumption [5]. Figure 1 shows a robot featuring Whegs with
claw-like spokes which dig into rocks and obstacles.
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Figure 1: Prototype of the Wheg robot to test out the wheg design, in addition the hardware required
to move around an environment. This prototype ran on a Raspberry Pi zero and used a phone charger
cell providing 5.1V and a maximum of 2A of current.

Whegs are easily manufactured via 3D printing, and there are multiple design variations of the
Wheg which suit different purposes [6]. The European Space Agency (ESA) adopted a similar design,
shown in figure 2, for the PROLERO project [7]. This project used a simpler design of actuation where
the legs were rods rotating on one axis. This design could at maximum travel over obstacles less than
or equal to a height of 10 cm. The total payload mass was 1.5 kg making it light for space travel and
the rover passed the tests at the ESA planetary utilisation facility, confirming the model’s validity [7].
Although not quite Whegs, these legs operate on a similar principle.

Figure 2: The PROLERO robot taken from ESA [7]

Other potential designs are caterpillar tracks which have good energy efficiency due to the optimised
traction system of caterpillar tracks, where one side pulls and the other side pushes. This also allows
more grip over uneven terrain. They do, however, weigh more and are more difficult to repair than
wheels meaning that the robot would be inoperable if a link broke. Whereas, with wheels or Whegs,
it could continue to move with worn-down tyres or grippers.

3.2 Biology and Bio-inspired Robotics

Research on cockroaches inspired the mechanical design of the chassis used in this project. Specifically,
cockroaches bend their backs to climb over obstacles as illustrated in figure 3. Furthermore, when
cockroaches run into a wall, they bring their limbs into phase at the point of climb. The rotational
locomotion of the legs is comparable to the cyclic locomotion of wheel. The robot developed in this
project uses a Wheg design to improve its advancement in a similar locomotion. A bend in the robot
created a higher stance to climb [8].
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Figure 3: How the cockroach rotates its limbs to climb an obstacle compared to a bio-inspired robot
(after [8]).

3.3 Genetic algorithms

Genetic algorithms (GAs) are optimisation methods which are inspired by biological evolution [9].
Over a number of generations, encoded information (genotype) will be changed (mutated), where the
suitability of this change is measured via a fitness function. If the mutation has helped the overall goal
then it will get a high fitness and replace other genotypes within the population.

One way to use GAs is to learn the weights and biases of a neural network. At the beginning of
the process these are picked at random e.g. from a Gaussian distribution and each generation allows
mutation of these values. Mutation functions fit Gaussian noise on top of the current encoded data,
which alters the operation of the neural network when applied.

The Microbial algorithm [10] is a GA that generates a population of agents. The Microbial trials
each of the agents in a tournament against one another. The winner overwrites the loser. Particle
Swarm optimization [11] uses a particle physics-inspired approach where, if particles are energised
through heat and cooled slowly, they move back into place better than if cooled quickly. This theory
is translated into a genetic algorithm in which sub-optimal solutions move away, enabling new new
solutions to be trialled. Using any of these GAs, an agent can be optimised for a task through guided
behaviour.

3.4 Evaluating performance of robots on terrain

It is important to be able to quantify an agents’ performance across trials. Current research in rough
terrain robotics has used physical attributes such as the coefficient of friction and slippage plotted
against the climb [12].

Figure 4: A 3D plot of the simulated paths for a moon rover [2]. The z-axis shows a prominent climb
on the experimentation map 1 and map 3. These maps are preset terrain within the simulation. It is
visible that map 2 contained smoother terrain.

Studies [13] [14] have measured locomotion performance based on several values, including slippage,
required torque, and minimum friction coefficient. These metrics create an overall score, plotted

6



throughout each trial. µ represents the friction coefficient needed for tangential (R) and normal (N)
force with (r) given by the radius of the wheel with torque (T ).

µneeded =
R

N
=

T · r
N

(1)

Slippage consumes energy without making the robot move forward. Slippage was calculated using
the encoders on wheels. Distance is calculated using the following equation which uses encoder values.
The wheel encoder (∆coder) is used and multiplied by the circumference of the wheel (2 · π · r). This
divides over the pulse/turn multiplied by the gear ratio.

Distance =
∆coder · 2 · π · r
Npulse ·Rgearbox

(2)

The slippage is the difference of ground truth and wheel odometry [13]. The simulated robots used in
Figure 4 could provide enough torque, but that does not mean equal performance. The factors that
measures the robot journey success form a Max and Min G score. The G score is taken from all the
torque needed. The attributes required for the Max and Min G are easily calculated in simulation, but
would be harder to find on a physical robot. The use of gyroscopes and accelerometers are potentials
for a substitute for measuring slippage, as well as reading current from the motors to evaluate torque.
Indoors, we could also use Vicon tracking to precisely measure the 3D pose of the robot which would
allow us to quantify these attributes.

3.5 Sensors

Terrain mapping sensing can take many forms. One study [15] used a lidar (Light Detection and
Ranging) sensor that would read at four layers to construct a world model. This model was then used
to create a 3D perception allowing the hexapod robot to predict the appropriate motor movement of
its chassis to interact with the environment.

Optical flow uses the vectors between pixels in two images taken one immediately after another. It
allows sensing of movement within an environment, which works well with robotics that are designed
to move and navigate. This can be used for optical flow alone [16]. OPtic flow calculates the velocities
per pixel in images taken one after the other. This then is used to predict where the pixels will be
next. Optical flow can also be used to calculate where obstacles are and swerve an agent away from
the obstruction via depth estimation maps [17]. This depth estimation method was achieved using a
convolutional neural network and the Canny Edge Detector and morphological operators [18]. The
method would calculate the median between a pixel and neighbouring pixels as input with a 5x5
filter within the convolutional layer. The input itself used morphological operators as modification of
the canny edge detector in order to improve edge detection accuracy. One example of this is a light
transformer function.

Depth perception via stereo imaging and time-of-flight is another method. Time-of-flight sensing
measures depth using time delay between an object and light reflecting from it. This allows depth
estimation. Stereo imaging works by triangulating pixels by looking at the distances.

The hexapod robot shown in figure 5 used this method with six legs to predict stable movement
over uneven terrain [19]. This prediction method showed a high accuracy, while being computationally
less advanced than the lidar method [15].
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Figure 5: Weaver the stereo vision hexapod. The ground is uneven for all legs, therefore the agent
must adapt across all legs.

3.6 Contributions to the field

Giving autonomous robots a sense of self-preservation is important in scenarios such as planetary
exploration, or hazardous locations on earth like nuclear reactors. In general, by prolonging the lifespan
of robots [20], it will save money. Our approach will use computer vision techniques to evaluate terrain
and make safer and easier path decisions. Our design will also be implemented on a relatively cheap
chassis, aiming to bring down the overall cost of robot development.

4 Requirement analysis

Existing robotic solutions have not combined bio-inspired chassis design with evolved learning. This
project will use a physical robot platform as well as a simulation of this platform for the gathering
of data. Simulation provides a proof of concept by trialing navigation much quicker than a physical
robot.

4.1 User needs and ideal features

The agent will need to learn how to recognise the differences between rough and smooth terrain based
on visual information and furthermore learn how to traverse it. Ideally, the physical robot will use
its back actuator to improve its ability to climb over terrain. The agent will also need to understand
its limitations and not attempt routes that it will get stuck on. Ideally this will be demonstrated
on a physical robot but, if real world noise prevents this, it is still essential the algorithm works in
simulation as proof of concept.

4.2 Limitations

This project does not intend to create a robot that can climb any terrain. While the Wheg design will
improve the robot’s climbing ability, it will not make it impervious to the laws of physics!

4.3 Problem the system is solving

The problem this research is solving is to improve autonomous robotic navigation for danger detection
without the use of training data that is specific to an environment. A robot can be deployed within
different environments which makes obstacle recognition harder. Additionally, from an engineering
point of view the robot is trialing Wheg designs which are an interesting middle ground between
wheeled robots and those with articulated legs. As most robotic navigation projects use conventional
apparatus, Whegs remain under-explored.
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5 Navigation

5.1 Simulated world

I set up the simulated environment illustrated in figure 6 using Python by generating a 2D map
from Perlin noise. Perlin noise is a type of gradient noise commonly used to procedurally generate
terrain [21] where the value of the space between two points changes smoothly. A grid of n dimensions
is created and each position is assigned a random vector, where the dot product is calculated between
the gradient vector and the offset vector. This allows interpolation between each dot product to
generate noise within the grid.

Figure 6: 2D simulation plot of a 3D terrain. Random generated points are shown to show the position
of agents and rewards.

The smoothstep function represents a sigmoid-like interpolation. The persistence, octaves, and
lacunarity are all altered via parameters in the world creation function. The octave is generated via
a combination of frequency-amplitudes, and the number of octaves entered defines how many times
this occurs. Each octave adds a layer of detail to the world, where the contribution of each octave
is defined by persistence. The persistence is multiplied by the amplitude within the noise generation
which effects the decreasing of the octaves. The lucunarity defines how much detail is added or removed
at each layer. This will change the frequency within each octave, which will change the height of each
index of noise.This function formed a map held as a two-dimensional array representing terrain heights
numerically.

In such simulations, we can find how far a point is from the start position and the terrain steepness
(gradient) at any point. The energy consumed (E) by a robot in a given trial is calculated from the
number of steps taken (S) and the accumulated terrain value of each place (P ). Each position on the
map has a value that represents how high or low the ground is. Very low values would be submerged
underwater and high values be at the top of the mountains. The difference between movement is the
step S up, down, or across from the current height. This is called the terrain value. More energy is
used going uphill than downhill, so these state transitions are valuable for calculating fitness. The
Manhattan distance is used as a measure of how far the agent has travelled. This was picked in place
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(a) (b)

Figure 7: (A) Terrain with low persistence. (B) Terrain with high persistence.

(a) The Agent field of view (b) Agent vision visual map

Figure 8: How the agent views the world and an aerial view that can be displayed. The agent is looking
downwards on the visual map. This is recognisable by the increased climb in the in the bottom-right
corner of the map. This corresponds to the hill climb facing the agent.
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of the Euclidean distance as the 2D terrain guarantees a worst case scenario [22]. Euclidean distance
finds the shortest path, which may not be the best path.

Energy = (| x1− x2 | + | y1− y2 |) ·
S∑

i=1

(Pi) (3)

By increasing the persistence, the terrain can be made more complex and, additionally, simulated
dangers such as water can be added.

For example, no real challenges would exist for an agent in Figure 7a due to the smooth terrain
and very small amount of water. However, an agent navigating the terrain shown in Figure 7b has
several pools and steep slops it would need to navigate.

A first person depth view was generated from the terrain by taking several vectors outwards from
the agent at altered angles of 20 degrees per reading. The red lines within Figure 8 show a field-of-view
of 100 degrees. x and y represent the current agent position, and the iteration of xi and yi represents
the next coordinates at the next iteration. α represents the start angle that the agent is facing in.

xi, yi = x+ROUND(|d · cos(α+ 20i)|), y +ROUND(|d · sin(α+ 20i)|) (4)

The round function converts the values to integers so that the pixel coordinates can be accessed. The
image is generated by going through each pixel coordinate found and comparing it to the current
coordinates of the agent (currentx, currenty) height value.

Height = worldcurrentx,currenty (5)

newPixelk,l = worldxi,yi
−Height+ 50 (6)

The generated newPixel at the indices of k, l will have the pixel intensity of the current position of the
world at the generated line xi, yi where i is the iteration through the array. We subtract the element
of initial height so that if the next position is higher, then the pixel intensity will be brighter, and if
lower then the pixel intensity is darker. We then add 50 to prevent negative values for the display, as
the subtraction of height could form negative values.

Each trial would generate a random coordinate for the agent to start in, with the condition that
this start point was not in water so that the agent would not receive 0 fitness before starting. An end
goal point would be generated randomly from an array of coordinated on the circumference of a circle
at a set radius.

The agent was written as its own class, where on initialisation the network structure could be
determined. Weights and biases are generated when an array of Gaussian noise is entered through the
set genes method as a parameter. Using a forward function, the network uses PyTorch and generates
output that is converted to a vector choice using the argmax function. There are eight directions
that the agent can take, therefore the network is expected to generate the probabilities of a success of
each vector. The success for this method is seen in Figure 12 within the results section. The vector of
movement allowed the agent to traverse across the environment.
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Figure 9: Architecture for the first neural network model where one input layer, one output layer and
two hidden layers are implemented.

5.2 Neural network model

The first model was the simple Feed-Forward Neural Network (FNN) shown in figure 9 where an input
of a flattened 5× 5 image is taken as input. The output is a list of all vectors on where to move within
the environment.

Figure 10: Architecture for the convolutional neural network where one Convolutional layer is applied
with a predefined kernel filter.

Figure 10 shows the The Convolutional Neural Network (CNN) architecture. The network was
implemented as a class in the code. This network class within the code could have the sizing of the
hidden layer width changed on initialisation, where the size was entered as a parameter. The output
layer and first linear layer would be preset sizes to take in the convoluted image and output one of the
vectors. The weight sizes were calculated between the input, hidden and output by the initialisation
function.

The CNN uses a two-dimensional convolutional layer where the input image is convolved with a
2D filter of size 3x3. The result of the convolution is then flattened and fed into two linear layers
and an output layer. With both network architectures, the weights and biases of these layers are
randomly generated from of a Gaussian distribution and evolved using genetic algorithm as described
in section 3.3. The architecture hidden layer width was experimented with to find an optimal size.
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All neural networks had eight output nodes, which represented the vectors of movement within a
two-dimensional space. The vector would be added to the current position in order to move within that
direction. The network uses argmax to decide which node to pick. The node is stated in Figure 11.

Figure 11: Output nodes labelled for direction in 2D space.

5.3 Fitness

While it is more important that an agent reaches the target, fitness calculations must take into con-
sideration the importance of energy efficiency. Therefore, I gave a weighting of 70% to the distance
travelled (calculated based off of the end distance to the point), and a 30% weighting to the energy
efficiency calculation. As it is only possible to get 100% energy efficiency by travelling down hill, it is
likely that most trials are only able to get a top fitness within the 90% range.

Fitness =

(
100− energy

100
× 0.3 +

10− endDist

10
× 0.7

)
× 100

The final step of fitness calculation is to multiply the value by 100 to get it in percentage format.
If an agent falls into water (where the position in the world has a value less than or equal to -6) or
finishes further away from the end position than where it started, the fitness will be 0. A genotype is
trialled three times on random coordinates, and the fitness is averaged. This is to make sure the gene
isn’t biased to a specific point which would result in a fluke high fitness.

5.4 Strategies

Three genetic algorithm (GA) approaches were taken to solving this task, then an alternative rule
based approach was explored to find whether GAs were over-fitting the problem. All three algorithms
shared some functions that would be standard across all algorithms to calculate mutation, crossover,
and fitness evaluation. Furthermore, across all algorithms, parameters were sampled from the same
Gaussian distributions, but were reshaped into formats appropriate to each algorithm.

Mutation was implemented by applying another Gaussian distribution over the top of a genotype.
I explored different standard deviation and mean parameters and constrained values between -4 and 4
to prevent values getting too high or too low and biasing the performance of the network. Crossover
functions have a probability of crossover parameter, which will copy a value from the winning genotype
over to the losing genotype randomly with the probability parameter.

The first GA was a simple microbial algorithm. This generated a population of varied sizes and
the optimal was found to be between 10-20 genes. Two genes would be selected from the sample and
trialled on three different random maps starting from randomly generated coordinates, and then fitness
calculated. The winner would copy over to the losing gene with a crossover between a mutation of the
winning gene and the current gene.
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Algorithm 1 Microbial

Require: gene population
gene1← randomPopItem(gene population)
gene2← randomPopItem(gene population)
fitness1← runTrial(gene1)
fitness2← runTrial(gene2)
if fitness1 > fitness2 then
gene1← crossover(gene2,mutate(gene1))

end if
if fitness2 > fitness1 then
gene2← crossover(gene1,mutate(gene2))

end if
gene population← gene population.push(gene1)
gene population← gene population.push(gene2)
return gene population =0

An alternative gene was explored [23], inspired by groups of genes within a larger population. I
used this approach as research has showed that it outperformed microbial algorithms due to having
more diversity of genes within winning groups, thus preventing convergence on sub-optimal solutions.
Fitness was measured by the summation of the fitness of all genes within a group.

GroupFitness =

n∑

i=1

(fitness(genei))

Algorithm 2 Group Microbial

Require: gene population
group1← randomPopItem(gene population)
group2← randomPopItem(gene population)
fitness1← 0
fitness2← 0
for i← 0 to LENGTH(group1) do
fitness1← fitness1 + runTrial(group1[i])
fitness2← fitness2 + runTrial(group2[i])
end for
if fitness1 > fitness2 then
group1← crossover(group2,mutate(group1))

end if
if fitness2 > fitness1 then
group2← crossover(group1,mutate(group2))

end if
gene population← gene population.push(group1)
gene population← gene population.push(group2)
return gene population =0

Both of these strategies had few converging on optimal solutions at the end of trials. Maximum
fitness would converge in the 70% range which is seen in the results section. This inspired the creation of
the final GA algorithm which would perform a microbial, normally for a certain number of generations,
then repopulate the population with mutations of the top gene. This best selection algorithm made
little difference to improving the accuracy. The end accuracy between the algorithm and the standard
microbial was only 1 to 5% apart.
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Algorithm 3 Choose best

Require: gene population, gene fitnesses, x
topGenes← [0...LENGTH(gene population)]
marker ← 0
for i← 0 to LENGTH(gene population) do
fitness← gene fitnesses[i]
placed← False
count← 0
while count < marker and NOTplaced do
if topGenes[count] < fitness then
topGenes.insert(count, gene population)
placed← True

end if
count← count+ 1

end while
if NOTplaced then

topGenes.insert(marker, gene population)
end if
marker ← marker + 1
end for
fitness2← fitness2 + runTrial(group2[i])
gene population← [0...LENGTH(gene population)]
for i← 0 to LENGTH(gene population) do
n← RANDOM(0, x)
gene population[i]← mutate(topGenes[n])
end for
return gene population =0

Finally we developed a simple rule-based method which takes the closest direction to the target
which avoids terrain that showed significant climb or water. This was achieved by viewing the vectors
possible and looking at each decision and removing any that would cause damage to the robot, such as
falling in water. Different restrictions were added to the rule based method. Different weighting was
applied to these aspects where avoiding complex looking terrain, and moving in the direction of the
end goal could be two different directions. It was found to have higher accuracy when the weighting
of the movement in the set direction was reduced, and the routes that lead to potential dangers were
ignored. This allowed the agent to try to move towards the best location, but favour avoiding difficult
terrain, and completely ignoring hazardous terrain.

For initial genotype selection the population had two random indices selected. This allowed tour-
nament selection between both. A later approach would select one index and select a neighbouring
genotype to have a slower convergence on sub-optimal solutions. This improved the accuracy of the
end genotype.

5.5 Results

The tests for simulation gave varied results based on the different algorithms used. Random generations
of where the agent was within multiple trials was averaged for each fitness. This prevented fluke results
of agents biased to specific routes. The most effective was the group of microbial with re-selection of
the best genes.

The architecture of the network was decided through several trials of all networks. Using a microbial
algorithm with the same network for 10 trials, the results of network performance was quantified. The
tests used a population of 15 and 200 generations.
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Figure 12: Averaged results of different architectures on the same task using the microbial algorithm

Notably in Figure 12 the fitness units are very low due to averaging different trials of the same
network. The population is regenerated randomly each time which leads to some trials having a low
fitness bearing population by default. The results were insignificant to suggest that there was a trend
for best accuracy within this sample size. The network chosen for the testing was of two hidden layers
of 10 nodes each as it performed well and was the between sizes 5 and 20 who also performed well.
The smaller network of two layers of 5 performed equally well to two layers of 10 nodes, but as there
is an element of randomness to these results, the medium architecture seemed optimal.

Figure 13: Results of the different network architectures after 1000 generations. The convolutional
networks used the microbial algorithm, unless stated that they used the group algorithm. It is visible
that the fitness results are much better in Figuree 13 than in Figure 12. This is because the results in
this figure have had 1000 generations to evolve, whereas the previous figure has had 200. The error
bars are plotted to show the standard deviation of three trials per network. The error bars display the
standard deviation between each trial at the given generation.
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It is clear that the results of many individuals converge on a solution which is sub-optimal, and
eventually cannot improve above this. Using a grouped population, the theory is that more internal
diversity would provide better solutions and prevent convergence of sub-optimal solutions too early.
However, the results show the fitness of these grouped populations to be considerably lower than the
other algorithms. Results of the elitist algorithm (which picks the best genes and repopulates at the
end of each sub-generation) converged on the highest fitness quicker than the other genetic approaches,
although, after sufficient generations, the microbial eventually performed better.

From these results there was little evidence to suggest whether the microbial or the elite microbial
performed better. The Elite microbial works better with smaller numbers of generations but, takes
longer to run than the microbial. With a simulation the microbial offers better functionality as we
can run many more trials in a short period of time. This is a particularily important consideration on
a physical robot where each generation will take longer and therefore the elite version would be more
suitable.

Figure 14: Distribution of rule-based agent performance. The average of 200 trials had a fitness of
88.9% which was much higher than the average fitness of the genetic approaches. This was displayed
as a histogram and placed into five bins.

The rule based approach makes use of predefined logic such as avoiding water and picking the route
that is in the direction of the end goal, unless the terrain climbing step is too high. The algorithm and
instructions are unchanging, unlike the genetic approach where random mutations affect the outcome
of the results. This method converged on much higher fitness than the genetic approaches without
failure.

Because the rule-based algorithm doesn’t require any training, in figure 14 we show the distribution
of fitnesses of the rule-based algorithm as a histogram. This shows that the rule-based method performs
better than the genetic approach in our simulations, suggesting that the neural network might be over-
fitting the problem. Quantitative results show us how the algorithm performed overall within different
scenarios. Qualitative examples clearly highlight how the best performing evolved.

For the simulation environment, persistence was chosen at value 0.7 for the trials. This was because
it generated more obstacles than lower values.
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(a) Microbial evolved agent (b) Microial evolved agent

(c) Elite Microbial evolved agent (d) Rule-based agent

(e) Convolutional 2D layer (f) Convolutional 2D layer

Figure 15: Qualitative examples of simulated agent trajectories. The start position is denoted in a red
dot, and the end target is denoted in blue.

Figures 15a and 15b show that evolved agents with high fitness follow contours across complex
terrain. Travelling along contours uses less energy than following the shortest euclidean distance over
complex terrain.

The rule based approach example shown in figure 15f demonstrates precise navigation around
dangerous obstacles such as water pools.
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Figure 16: The results of the old and new mutation types on the fitness evolution. The old is denoted
by the dotted lines. The error bars display the standard deviation between each trial at the given
generation.

The old mutation would select two random genotypes from the population for trials. The new
type only selects local neighbours in order to have competing genes within the population emerging.
Using a mutation rate that selected neighbouring genotypes, rather than random indices within the
population, had a positive affect on the algorithms. Figure 16 shows that this method always had a
higher fitness. This selection method was used within the end model.

Figure 17: Architecture experimentation for the conv2D network. The values within the legend are
encoded as ”numInLayer1 numInLayer2 hidden layer”. ”10 10” means there were 10 nodes in layer
one and 10 nodes in layer two. When using a convolutional layer, this refers to the linear layers that
proceed the convolutions. The error bars display the standard deviation between each trial at the
given generation.
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A simulation was set up to test different network architectures using the 2d CNN network. 2D
convolutional neural networks are popular choices within the image processing world. Images have
high dimensionality and CNNs are effective with reducing parameters without loss of model quality.
This happens by applying a kernel over an input image, which creates a new image out the other
side of the convolutional layer. This image has reduced parameters. A series of hidden layer sizes
were tested. To reduce the search space, I only considered configurations where these layers were the
same size. Unsurprisingly, it was found that larger layer sizes performed better than smaller widths.
Figure 17 shows that hidden layers of size 40 were the best for this task.

6 Vision

6.1 Stereo cameras

In order to obtain a depth image, similar to that produced by the simulation described in figure 7,
I initially used a stereo camera setup consisting of two USB Arducam modules and extracted depth
information using the OpenCV disparity function. Initially, the cameras were distanced along an
aluminium profile to secure them on the same axis. The Arducam modules were chosen over the Pi
cameras (which had similar quality) as the Pi only has one camera input through ribbon cables. For
multiple Pi cameras, additional switch hats are needed, which would raise the cost and complexity of
the problem. USB allowed simpler hardware and easy processing via the OpenCV library. Additionally,
using USB cameras meant they could be directly connected to a desktop computer for testing. At this
stage there was no need to use the control board of the Robot as it would be much slower than a PC.

Figure 18: Disparity map generated using no pre-processing techniques

A disparity map was calculated using the OpenCV library but the initial results were disappointing,
even with calibration. Calibration was attempted through changing parameters of block size and
number of disparities. The larger the block size, the more noticeable features are. Noticeably in
Figure 18 significant features were located but much of the image goes unnoticed. The wall in question
was approximately 150cm away from the cameras, and the rocks were 50cm away.

Many of the issues came from problems within the camera position, where the cameras were never
completely aligned. To avoid wasting time solving this, I instead switched to an X-box Kinect sensor
which was fully calibrated and used a more precise time-of-flight sensors.
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6.2 Kinect

Figure 19: Depth images from the Xbox sensor, left normal image, right depth image.

Figure 19 presents how obstacles look in front of the image sensor. This is better calibrated than
the previous camera system, although the sensor is much larger and mounting it on the robot would
require a more powerful battery and a larger chassis. Therefore, this camera will only be used as a
proof of concept for using depth navigation in a real world environment.

Figure 20: Xbox Kinect with measured distances of objects.

Three objects were placed in front of the camera at 26cm, 60cm and 120cm away. It is clear, based
on their different colours that these three objects are at different distances. One issue is all the nearby
ground appears as a large black box at the bottom of the image. The robot would need to be able
to distinguish between ground going into the distance and a real obstacle. This is easily addressed by
cropping the image and only looking at the centre where the agent is able to view the environment
without the confusing details.

Figure 21: Xbox Kinect with measured distances of objects displayed via matplotlib.

Within my simulations, models had been trained to avoid hazardous terrain. Applying the depth
imaging to these models allows testing the robustness of these models at crossing the reality gap. The
image from the Kinect is cropped to a rectangle within the middle of size 200 by 400 and this is resized
using the OpenCV function to an image of 5 by 5 to match the size of the views from our simulation.
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Figure 22: Reduced scale image for the model. The image used is the same in Figure 21.

Figure 22 shows that images produced in this way closely resemble those obtained from the sim-
ulation and the nearest object is highlighted clearly, while the background contours away. As there
were small amounts of noise where the sensor had detected a background object as being closer to the
lens than it was, I explored different interpolation methods for resizing of the image to find which one
performs best.

Figure 23: Qualitative example of noise creating problems within the generated image.

As figure 23 shows, linear interpolation highlights noise significantly which would risk the robot
moving in directions which are not representative of the environment. Instead, area interpolation was
chosen as it picked up both the wall in the distance and direct threats in front of the sensor. There
were more rocks on the right hand side of the sensor, which is found in the darkening of the right
hand side of the vision. Area interpolation works using the re-aggregation of data as sets of polygons
mapped to the next polygons. The algorithm selects the nearest neighbour to a pixel and yields a
piecewise-constant formation of new data. This keeps more general detail about an area compared to
other approaches such as linear interpolation, which maps values to other values within a linear space.
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6.3 Results

Different pre-processing was applied on the stereo images in order to highlight key areas of the images.
Some techniques were more successful than others, but it transpired that using two cameras next to
each other was not as accurate or calibrated as an off-the-shelf solution.

Figure 24: K-means clustering as a pre-processing technique on the images

As there was a too much noise within the images, I applied K-means clustering as this method has
been used as a computer vision technique to reduce noise and reduce complexity for machine learning
models. The hope was to reduce the noise and change within the stereo images. The parameters used
were varied numbers of K, at 100 it took too long to process and found little, with K at 4 it took less
time and found similar disappointing results.

This method was unable to distinguish the differences between far in the background and close
to the camera. The basic structure could be seen in a room but no finer structure is extracted.
Furthermore, the K-means reduction lead to a blank result on the outdoor trials. This suggests that
the reduction did not reduce noise in the desired way. Stereo vision relies on the changes in pixels,
which cannot always be found with k-means reductions. Therefore, this method will not be appropriate
for pre-processing.

Figure 25: Removal of different pixels in image

Figure 25 shows the result of removing the pixel differences within two images (before and after)
in order to remove the amount of noise. This was performed using the structural similarity function
from the skimage library. The intuition behind this was it would scale down noise and only keep the
features that were relevant and significant. This was successful as it removed noise, however not to
the significant that makes it worth the extra processing step.
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Figure 26: Dilation of image after disparity

Dilation is a morphological transformer which uses a kernel to increase the true values within
a binary image. This works by generating the disparity map and then expanding around the area
of this pixel for set iterations. As shown in figure 26, dilation of pixel areas is more successful at
identifying hazards while removing noise. However, it could not accurately distinguish between the
foreground, middle ground and background. The middle ground is ignored which is likely down to
camera calibration problems. After a disparity map is generated, it is seen that only small areas can
be valued significantly, however, shape can be seen. This is evident in Figure 18 where the wall and
arm raises significance. The OpenCV library provides the features for this. It is clear that the use of
morphological operators help to show the clearer routes through an image and avoid structure.

For vision-based navigation, the robot made use of a depth camera. The Xbox Kinect was used to
gather depth imaging of the environment. This was reduced in scale to 5 by 5 pixels to highlight key
features about the terrain. Using this image, the trained agent within the simulation was deployed to
use a convolutional neural network. This was because the Conv2D network architecture had the best
accuracy within the given trials.

The chosen visual sensor was too large to fit directly onto the chassis, therefore the sensor had
its video recorded while being manually carried. The model was tested using these gathered frames
and plotted as example based figures within the results. As there are multiple directions that can be
valid within these examples, using numeric based validation methods was not possible without mass
labelling the data. This would still be down to human judgement. Instead, human judgement over
the examples will be the evaluation method of how well the model performed in the real world. The
network was trained to predict a vector of movement out of eight possible moves, but as this was not
controlling the robot, so the vector is simply displayed as the chosen direction of travel that should be
taken.

Evolving this navigation model directly on the robot could lead to better results. This is because
the model will learn how its own hardware and control deals with different sized obstacles, and which
obstacles the chassis could overcome with back-bending. This method was not used because enforcing
reward posed too many challenges. Knowing when the robot has collided, got stuck and used energy
requires a number of sensors. Additionally, it would have taken a large amount of time to perform just
one trial. Simulation mostly converged on peak fitness at generation 400 to 800. Additionally, if the
simulated model performs well it will have shown the model to be robust enough to cross the reality
gap between simulation and physical implementation.

The reduction of the image to a 5 x 5 pixels input for the model was applied to both depth images.
One generated by the Kinect and one generated by the OpenCV disparity function from two USB
webcams. Based on my previous results, both used the area interpolation resizing method.
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Figure 27: The generated robot vision image on outdoor terrain using the USB Arducam with the
OpenCV disparity function.

The image from the stereo cameras wasn’t able to pick up the clearer direction compared to the
Kinect in Figure 28. The Kinect had smoother disparities than the OpenCV image. This lead to a
smoother robot vision image than in Figure 27. Its likely that the OpenCV generation would lead to
more chaotic predictions if used on the trained model, as there is a large amount of noise.

Figure 28: The generated robot vision image on outdoor terrain using the Kinect sensor.

In conclusion, the Kinect sensor is much better at detecting depth and filtering out noise than the
USB Arducam webcams with OpenCV. Therefore, the Kinect sensor or another off-the-shelf depth
imaging system will be used for deployment on the physical robot.

Figure 29: The robot traverses over pebbled environments with a wooden obstacle where the ground
texture changes.

Figure 30: This figure shows the robot attempting to climb over larger rocks.
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The outdoor environment shown in Figures 29 and 30 give qualitative examples of the types of
obstacles that the agent will face. The larger rock is the largest challenge due to the non-linearity of
movement and different forces acting on the chassis.

Evaluation of how the simulated trained model reacts to the real world robot vision is denoted
by the following qualitative examples. These show the original image, how the depth sensor views
this, how the robot views this and the direction the model predicts. The vector is in the direction of
movement of the line triangular marker. The unmarked end is the start position of the vector.

Figure 31: This example shows where the depth sensor has picked up a large amount of rocks in front,
and a continuation of this obstacle moving across.

This terrain in Figure 31 is deemed too hazardous by the model, where the vector tells the agent
to turn sharply left. This is considered a success case.

Figure 32: Robot vision detects that there is a large obstacle in front of the current space.
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The sensor has picked up the distance as nearby in Figure 32, despite it being far in the distance.
This is a failure case for the sensor, however, it is a success case for the model where it has successfully
predicted to turn back when there is no terrain to move to. This suggests that the model makes use of
a form of spatial-temporal reasoning to know there is no point moving forward, despite the immediate
ground being free.

Figure 33: Model move backwards from immediate threat.

Figure 33 detects the immediate obstacle, however moves in the wrong direction. The direction
chosen wouldn’t be a failure for the robot, but is not the optimal direction for traversing the terrain.
It is likely the model has biased this side as the vector of movement, as input vector to the network
was set to (1,1). This means the model is trying to find the end destination by turning right towards
it.

Figure 34: The sensor has picked up a nearby piece of grass an obstacle. The model has chosen to
ignore a small obstacle.
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Figure 34 is fail-case of the model. The model is going left and avoiding difficult terrain within
the immediate ground, however has been given an input vector of (1,1) which is directing it through
the less terrain-complex route. The model has not taken this route, and instead has chosen the more
complex route.

Overall the model has been deployed on real life imagery and performed well. Through the qualita-
tive examples there was not one prediction found that would have harmed the robot. This implemen-
tation has been able to cross the reality gap for stereo-vision based navigation. The reduction of the
search space by using a 5 x 5 image enabled the removal of real world noise. One potential problem
holding back the crossing of the reality gap was that the robot in the simulation was set-up to be able
to turn on the spot. The chassis built for this project required rotation of the front Whegs to move
left and right. This should not be a problem as each input image is independent of the last, however
testing this would be the work of future research.

Though the model isn’t necessarily the most efficient, it does keep the agent out of danger.

7 Robot platform

7.1 Chassis

The prototype version of the chassis used aluminium profiles with a lithium ion battery held in the
centre under pressure. Continuous rotation servos are attached to the sides of the profiles.

Figure 35: Wheg robot prototype (version 1)

This robot would get stuck over obstacles where the weight could not be redistributed. A bendable
back actuator was implemented to the chassis to redistribute the weight. Additionally, suspension was
introduced to absorb shock and prevent tilt of the chassis over rocks. These alterations should solve
the problems of the version 1.
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Figure 36: Wheg robot version 2 introduction of back actuators and suspension.

The chassis was built using aluminium servo parts, typically used for biped robots and robotic
arms. These not only easily fit standard servos such as the continuous rotation servos used for the
robot’s locomotion but, in addition, made it easy to fit suspension and the cockroach inspired back.
Figure 36 shows the robot within outdoor trials. The robot chassis also incorporated a Wheg design,
enabling it to climb over terrain while maintaining stability under initial tests with an Xbox controller.
The main chassis of the robot used the suspension system shown in Figure 37 so that a higher incline
on one extremity does not tilt the overall robot. This design was inspired by a Tamiya radio controlled
car [24].

(a) Neutral position (b) Activated position

Figure 37: Figure showing the movement of the suspension system design moving over hardware. This
uses a single spring shock absorber per Wheg.

The initial Wheg design would get caught while reversing as the claws were only grabbing one way
and the robot also struggled to turn left and right on the spot. The addition of a tilting mechanisms
for left and right turns was added to solve this. In some circumstances, when the robot would try
to climb, it would need an element of height to get over obstacles. This was achieved by adding a
stabiliser servo with a wheel caster on the bottom. When deployed, the wheel caster allowed the robot
to carry on moving without getting caught. The heavy battery was placed at the back of the robot as
it was discovered that the front needed to be lighter than the back to have improved climbing abilities.
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Figure 38: Wheg robot version 3 with improved weight distribution, stabiliser and better whegs.

The neck used a pan and tilt mechanism which was placed at the front of the robot chassis and
panned left to right, to improve turning left and right within an environment. The tilt will be up and
down on the axis of gravity acting as a back. A bend in the back will redistribute weight – the exact
process applied in the cockroach research [8].

For control, the chassis used a Raspberry Pi for its low energy consumption, yet reasonable pro-
cessing power. The Pi zero was chosen as it is the lowest consumption of power for Pis on offer, while
being small and light in physical size. It was also setup with Linux, which allowed SSH control of the
robot and ease of gathering results from trials. The configuration of the Raspberry Pi used a 32GB SD
card to give plenty of expansion space. Due to the use of neural networks and computer vision, having
a large SD card allowed RAM over-spill into virtual memory, which would be much slower but would
prevent the experiment being cut short. On top of the Pi there is an Adafruit servo driver that allows
up to 16 servos to be attached. The Raspberry Pi allows the stacking of hats which provides ease of
connection and reduction of wires compared to using external modules. The Adafruit servo hat has
vast online support and documentation, making it well suited for this project. One challenge of using
the Raspberry Pi Zero is that PyTorch is harder to install on ARM processors than on standard desktp
machines. It is worth noting that the Pi Zero will only compile PyTorch arm python wheels that end
with ’linux armv6l.whl’, however, the GitHub build for this file was not compiled with NumPy. The
solution was to download the ’linux armv7l.whl’ version and rename it to ’linux armv6l.whl’ before
running it.

The continuous rotation servos used 100ma while active and the back actuation servos 500ma. In a
worst case scenario we assume that all current is needed throughout each servo motor. This is denoted
by the following calculation:

(4× 100) + (2× 500) = 1400ma (7)

The battery chosen provided this current with the additional current the the Raspberry Pi requires as
a minimum. An error found in testing earlier models was where the current draw was too great which
made the Pi reboot or would restart the USB drivers.

On the front of the robot two cameras were mounted for stereo vision. The camera sensors changed
throughout the design process, but through the use of aluminium profiles, components could easily
be interchanged. A gyroscope/accelerometer MPU-6050 sensor was mounted on the front to detect
unexpected incline. There is the additional option of current monitoring or wheel encoding to detect
whether there is movement within a wheel. Current monitoring is more suitable than wheel encoding
for this task for two main reasons. Firstly, embedding encoding requires additional hardware as well as
modification to the chassis. Furthermore, if the chassis is suspended in the air, the wheels will rotate
despite having no affect to the chassis.

7.2 Back actuation

As described in section 3.2, organisms like cockroaches can bend their backs to increase climb. Research
on cockroaches explored the use of back bending with cockroach-inspired limbs on a robotic chassis [8].
In this robot, back bending was controlled by a servo motor which introduced a pan-tilt style movement.
The movement of the back was performed on one axis rotation. The other tilt helped the robot turn left
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and right while travelling around an environment. The back bending proved successful while controlling
the robot manually as, while the chassis previously got stuck at points within an environment, the
redistribution of weight via back actuation allowed climb, preventing obstruction. This can be seen in
the qualitative example of Figure 40.

Figure 39: The back rotation and turning system in the centre of the robot chassis. One for direction
and one for the back. These two servos were responsible for rotating more weight per servo than any
of the locomotion joints. This meant they were of heavier duty standard thus drew more current.

Figure 40: How the angle on the robot changes with back actuation. The first image is where the
robot got stuck going over a barrier. The second image shows the distribution of weight to the centre
of the robot, which allowed more torque to be focused on the back wheel rotation rather than holding
the weight of the robot. The final image shows the robot having climbed over the obstacle. Outlined
in Figure 40 is a drawn axis in blue to demonstrate the movement undertaken by the robot.

Figure 40 was produced by driving the robot manually using the Xbox360 remote and a USB dongle.
This allowed proof of concept that the robotic back was useful for the task. However, autonomous
movement requires detection of being stuck. Acceleration and tilt within a direction can be measured
with the MPU6050 sensor. Tilt in the axis direction of up for the MPU6050 positioning on the robot
will be the x-axis. Acceleration is measured and movement can be detected. These two features make
the MPU6050 a candidate for this task. The sensor itself is mounted on the front of the robot, as this
will be the place that first detects tilt when going over rough terrain.

A gyro class was created that could be imported into the main Wheg robot code. This is used
to trigger when an obstacle is hit, and will get predictions from a neural network model for how to
overcome such obstacles. The steepness of the ground can be extracted from the sensor by low-pass
filtering the accelerator vector and this could also be integrated to calculate velocity.
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Figure 41: The back bend model is only needed when an obstacle is predicted. The task requires
evolution of the model. Through initial trials, the algorithm is used to evolve movement over time by
taking motor positions and gyroscopic data as input, and motor movement as output. The genetic
process for evolution will use similar approaches as the navigation.

Initial evaluation of the accuracy of this approach showed that the accelerometer produced a lot
of noise and therefore could not be trusted for accurate collision detection. This idea was abandoned
and replaced with a method that exploited spikes in the current caused by the motors being unable to
rotate as the servos would stall and draw high current. As example current trace is shown in Figure 42.

Figure 42: Display of the current read from a rotating servo attached to the robotic chassis. At
different time steps, different amounts of pressure were applied to the servo.

Between the first time step and time step 98, no signal had been sent to the motors for rotation.
After times step 98 a signal was sent and the current draw is working at approximately 100mA. This
is expected as the current draw of a servo is 110mA. At time step 110, the robot is lowered onto
a surface but some of the weight is maintained by the motor. The Whegs mostly rotate with some
disturbance to speed and occasionally get stuck. At time step 120, the robot is placed fully on the
ground with weight preventing it from moving. The current dramatically spikes up to approximately
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450mA. Between time step 120 and 135, the robot was picked up, and placed back down. This is why
the current draw decreases at this interval. Based on these measurements, I converted the current
readings to an array, then counted how many times the current exceeded the threshold of 0.4mA. If
this was found to exceed 30% of the readings taken, the robot would be registered as stuck. 0.4mA was
chosen through a trial and error process. 0.1mA is the expected current, with added noise depending
on the complexity of the terrain. Anything above 0.4mA means the motor is not moving. The I2C
address of the servo hat had to be changed to 0x44 from 0x40 due to the power monitoring hat using
address 0x40 for channel 1. This was achieved by soldering bridges on the PCB address bar. Using
the command prompt and changing the default parameters to the library, the new address was found.
If this was not done, the motors would spin out of control due to mixed signals causing chaos.

The algorithm used to generate movement was the hill-climber. When the robot is stuck it will
need to get unstuck, and a microbial needs to perform two genotypes in the same environment. If
one genotype gets the robot unstuck, then the second is not needed and causes an unfair trial. The
hill-climber can modify itself on different trials to get the best outcome. As the search space is low,
the hill-climber is unlikely to have convergence problems.

The hill-climber uses a genotype that represents the weights and biases of the neural network. This
neural network is contains linear layers taking in the current motor positions, the MPU-6050 data and
then predicts whether to move the back up or down using the argmax function on two nodes.

7.3 Proprioception

The physical robot can sense its own state through a series of sensors. The robot can sense whether
wheels are stuck through a rise in current being supplied from the battery. Every motor state is tracked
through a Python library, which means angles of standard servos is known as well as the expected
speed of the continuous rotation servos. The angle tilt of the robot is known using an MPU-6050.
When the robot has tilted to move over an obstacle, the robot is able to use this information with
motor angles as input to the back bending neural network. As output there are two nodes to decide
whether to move the back up or down using the argmax function. For the robot to know whether the
network had performed well, a fitness function was written. This made use of the knowledge that 0.4A
was the highest these motors would raise to, and 0.1A was the default spin. The fitness would perform
the following, where C is a set of all the current reads from each continuous rotation servo:

Fitness =
(0.4× 4)−∑4

i=1 Ci

0.4× 4
× 100 (8)

The value 4 represents how many motors there are. If only two motors are being read from the robot
the value would be 2. The multiplication by 100 converts the value to a percentage.

7.4 Results

Back actuation improved climb over terrain, which can be seen in the qualitative example of Figure 40.
Redistribution of weight allowed more torque to the front Whegs. The physical agent was trialed over
different terrain. In order to prove the concept of back-bending and obstruction detection, the robot
was placed on a flat surface and it would be physically held onto the floor to detect being stuck. Once
detected the robot would be released. This performed well, though would on occasion be delayed at
detecting it. This is likely due to the event loop creating delays while listening for instruction from
the Xbox remote. The heuristic performed without failure when it was trialed.
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Figure 43: Genetic algorithm back bending accuracy over generation.

Solutions using the hill-climber algorithm for evolving the back converged on high fitness quickly.
By 15 generations at least one genotype was close to maximum fitness. This is likely due to the
small search space that this problem has. Small changes within the back actuator angle can provide
successful locomotion over terrain.

The final environment was the outdoors. This was a dynamic environment where pebbles and rocks
could easily slip and change throughout testing. This environment was used to evaluate how well the
robot performed in the real world.

8 Future work

One of the main limitations between robotic navigation and simulated navigation was having a reliable
depth sensor. The most reliable sensor the project had access to could not fit onto the robot for secure
mounting. Additionally, the sensor used a high amount of energy that the robot battery could not
provide. Future chassis would need to use smaller and energy inexpensive stereo sensors. This would
allow more rigorous testing of the robot. The Intel Realsense is a small stereo image developed for
robotics. This is much smaller than the Kinect. There is also the ZED2 AI-vision camera that uses
neural models to predict depth sensing. This has been deployed on a number of industrial applications.

Additionally, it was a mistake to use the Raspberry Pi Zero for such a task. Though it worked well
with the battery and interfaced with all the given hardware, it was slow and required a lot of extra
peripherals attached to it.

The sensors available for the robot were limited to stereo vision. This had calibration issues with
a dynamic environment. Using sensors such as LIDAR would allow more accurate representations of
an environment. This would be the work of future research.

A critique of the methods carried out within this project would be everything was done on the
same chassis. In hindsight it would have made sense to make smaller and lighter chassis, starting with
a small chassis for stereo navigation. This would have been more energy efficient and allowed more
testing time. After this, a back bending model would have been introduced to experiment with a
working navigation model.
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9 Conclusion

This project successfully showed that an agent can avoid collision with environmental hazards by
understanding its limitations. Evolved and rule-based navigation were both successful approaches to
this. Rule-based was more reliable at traversing terrain than evolved navigation. However, the evolved
navigation made use of terrain contours for energy efficiency. Additionally, the rule-based agent fitness
was not significantly higher than the evolved fitness. The agent was able to recognise hazardous
terrain through trials of crashing into it. The goal of this project was for an agent to understand its
own limitations, which was achieved.

Simulated trials proved the concept that this paper aimed to develop. The agent used depth
imaging which was also implemented on the physical robot. The real world depth imaging was not as
clear as the simulated depth imaging, but this was expected due to real world noise. Crossing between
simulated and physical implementation, referred to as the reality gap, posed many challenges. The
robot had a larger search space due to real-world noise, thus increasing complexity of converging on a
solution. The physical robot would have taken a long time to converge on solutions that the simulated
agent found. Instead, the image input was reduced in order to be more representative of the simulated
information, thus reducing the real world noise.

The stereo imaging using the Kinect sensor gave the best representation of the depths of an en-
vironment. This was reduced to the scale of a 5 x 5 image to highlight key obstacles in the terrain.
Using a trained agent model from the simulation, it was successfully demonstrated that the reality gap
could be crossed for physical robot navigation. The predictions from the model made the agent avoid
large obstacles such as rocks in an outdoor environment.

Using a biologically inspired chassis improved the robot’s ability to traverse terrain, which was
expected. The locomotion features of cockroaches were successfully implemented using 3D printed
Whegs and a bendable back. This allowed the chassis to climb over rocks and redistribute weight to
improve torque at separate parts of the robot. A back that can rotate for an off-road chassis shows
great potential for future 4-wheeled drive robotic locomotion. The back actuation produced a method
of feedback for learning which terrain the chassis should avoid. If back movement does not allow the
chassis to get unstuck, the agent has met a limitation. Therefore, terrain such as this would be avoided
by an agent through evolved navigation.
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Bresser, Andreas, Akpo, Joel Bessekon, Seydel, Michael K.-G., Dieterle, Alexander, Schmidt,
Steffen, Kirchner, and Frank. Cesar: A lunar crater exploration and sample return robot. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3355–3360, 2009.

[6] R.D. Quinn, Offi, J.T., Kingsley, D.A., and R.E. Ritzmann. Improved mobility through abstracted
biological principles. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 3, pages 2652–2657 vol.3, 2002.

[7] European Space Agency. Prolero. https://www.esa.int/Enabling_Support/Space_

Engineering_Technology/Automation_and_Robotics/PROLERO.

35

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Automation_and_Robotics/PROLERO
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Automation_and_Robotics/PROLERO


[8] R.T. Schroer, M.J. Boggess, R.J. Bachmann, R.D. Quinn, and R.E. Ritzmann. Comparing cock-
roach and whegs robot body motions. In IEEE International Conference on Robotics and Au-
tomation, 2004. Proceedings. ICRA ’04. 2004, volume 4, pages 3288–3293 Vol.4, 2004.

[9] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[10] Inman Harvey. The microbial genetic algorithm. In George Kampis, István Karsai, and Eörs
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10 Appendices

All code, models and files can be found on my GitHub: https://github.com/shepai/Dissertation
Included within the folder are the main aspects of the project.

agent.py - The main code to generate an agent that can use different network architectures set as
parameters. Used for genetic algorithm optimisation.

MicrobialConv2D.py - This uses the microbial algorithm with a convolutional neural network to evolve
the weights and biases of an agent moving round procedurally generated terrain.

Microbial.py - This uses the microbial algorithm to evolve the weights and biases of an agent moving
round procedurally generated terrain.

Group.py - Uses a genetic approach where agents are evolved in sub populations rather than just one
population.

Explicit.py - Uses a rule based approach to moving around the simulated world.

EliteGroup.py - Keeps repopulating with the best genotypes at the end of et generations.

wheg.py - Communication with the servo motors for physical implementation.

back.py - Evolving back bending based on Xbox remote feedback.

current.py - senses the current and plots it.

distanceSense.py - Looks through a given depth video and processes the images to 5x5 for model
prediction.
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1 Introduction

In this project, I am going to investigate autonomous robotic navigation through localized decisions
based on previous experience. Nearly all organisms are limited at some point when it comes to
movement. For example, an octopus can fit through an aperture that is bigger than its beak [1] and a
person can climb over rocks, but only if they have grip points for hands and feet. These environmental
barriers define constraints to an organism’s ability to traverse across it. When a path looks too arduous,
we will often choose a more accessible route if possible.

These constraints also apply to robots. Consider a Mars Rover over 395 million km away from the
person controlling it. If the Rover were to get stuck, there would be no one to recover it and – as it
takes 181 seconds for a signal to get from Earth to Mars – real-time control is impossible. Therefore,
a robot, like a biological organism, needs a sense of self-preservation so needs to know its limitations
and not attempt tasks of movement outside these physical constraints. [2]

Our agent will be set a target location and will need to reach it while avoiding hazardous/overly
complex terrain within the environment. Success will be defined as whether the agent got there safely,
and how much extra energy was consumed. When deciding on routes, there may be the scenario that
all paths are within the constraints but some are simpler to navigate than others. In this situation,
the agent will need to pick the option which requires the “least” effort. The best-case scenario for the
agent I am developing is governed by the level of complexity of movement necessary to overcome the
obstacle. If the agent gets stuck it will get no reward, if the agent makes unnecessary movement while
moving over simple terrain, it will get little reward.

I will initially explore this problem using simulation before moving to a robot platform with a back
actuator, stabilizer and neck actuator. The robot will need to learn to use these features to help it
navigate over the landscape. This robot will perform this task by using computer vision techniques,
which forms a prediction on the best route to take via a movement instructions generated at each
move.

2 Professional and Ethical considerations

In line with the BCS Code of Conduct, we must only undertake research within our competency.
The Computer Vision and Acquired Intelligence; and Adaptive Behaviour modules have given me the
relevant knowledge to attempt the task of terrain navigation. In addition to this, the Junior Research
Associate scheme has given me a valuable background in robotics and evolving hardware.

While no ethical approval is needed for this project, there are indisputable risks of dual use in AI
research. However, at the fundamental level that I am working on, I have made a conscious decision
to prioritise Open Science and all of my code will be publicly available on Github.

Because we will train our robot on images of real world environments, we will have to consider
the dangers of people being in view and thus consider the GDPR rules. However, as the resolution of
images will be low, this will not be recognizable.

Another ethical consideration is the safety involved in testing as the robot could be a trip hazard.
Therefore, we will test the robot in an environment that it cannot hit people. This will be the safety
netted area of the Future Technologies Lab.

3 Background Literature

3.1 Robot Locomotion

A standard wheel has low energy consumption due to a single axis continuous rotation; however, it is
limited when climbing over rough terrain. To improve their ability to traverse such terrain, agents can
use legs for example in a hexapod configuration which is incredibly stable [3]. However, robotic legs
use multiple servos which have a high current draw and, due to the need for inverse kinematics [4],
require complex control algorithms.

The Wheg design is a wheel-leg hybrid that can traverse more challenging terrain than standard
wheels while maintaining low energy consumption [5]. Figure ?? shows a robot featuring Whegs with
claw-like spokes which dig into rocks and obstacles.

2



Figure 1: Prototype of the Wheg robot to test out the wheg design, in addition the hardware required.
This prototype ran on a Raspberry Pi zero and used a phone charger cell providing 5.1V and a
maximum of 2A of current.

Whegs are easily manufactured via 3D printing, and there are multiple design variations of the
Wheg which suit different purposes [6].

The European Space Agency (ESA) adopted a similar design for the PROLERO project [7].
Although not quite a Wheg, it operates on a similar principle. This project used a simpler design of
actuation where the legs were rods rotating on one axis. This design could at maximum travel over
obstacles less than or equal to a height of 10 cm. The total payload mass was 1.5 kg making it light
for space travel and the rover passed the tests at the ESA planetary utilisation facility, confirming the
model’s validity [7].

Figure 2: Figure showing the PROLERO robot taken from ESA [7]

Other potential designs are caterpillar tracks which have good energy efficiency due to the optimized
traction system which allows more grip over uneven terrain. They do, however, weigh more and are
more difficult to repair meaning that the robot would be inoperable if a link breakage, whereas, with
wheels or Whegs, it could continue to move with worn-down tyres or grippers.

3.2 Biology and Bio-inspired Robotics

Research on cockroaches explored the use of cockroach-inspired limbs and movement. This involved
a bend in the back in increasing climb over obstacles. Another biological advantage was how the
cockroach would run into a wall. The cockroach limbs would be brought into phase at the point of
climb. The rotational locomotion of the legs is comparable to the cyclic locomotion of wheel. This
robot used a Wheg design to improve its advancement in a similar locomotion. A bend in the robot
created a higher stance to climb. [8]
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Figure 3: Figure taken from showing the cockroach rotation to an obstacle. This is compared to a
bio-inspired robot. [8]

3.3 Reinforcement Learning

Reinforcement learning is a machine learning approach that does not need labelled training data.
The focus is on exploring solutions and exploiting current knowledge through actions to maximize
cumulative reward [9].

This approach has been deployed for route planning robots to plot a solution on different terrain.
The reinforcement learning approach was successful in a small number of trials. This method used a
neural network that took state information to predict the next step. The research was carried out in
simulation rather than a physical agent.[2]

Figure 4: Reinforcement learning simplified showing.

Reinforcement learning is often described in terms of an agent, environment, state, reward, and
action. The agent is the entity to which the reinforcement learning applies, such as a robot. The
environment is the area in which the agent will roam and the state presents the agent’s current
position within the environment. The desired agent behaviour is then rewarded at the end of each
trial. Figure 4 shows the process of state transition through action and reward.

This approach can include a neural network that trains under a series of trials.

3.3.1 Markov decision process

The Markov decision process formulates reinforcement learning mathematically. The model states that
the future is independent of the past given the present. This is denoted mathematically by using P[t]
to represent the current state of the agent, therefore P[t+1] represents the next state [10].

P [St+1 | St] = P [St+1 | S1, ..., St] (1)

State transition probability is given by the following equation:

Pss′ = P [St+1 = s′ | St = s] (2)
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The agent transitions from one state to another. This is important to reinforcement learning as it
allows values to be functions of the current state. The state representation must be informative for an
effective reinforcement learning approach to take place. Manually determining optimal state space is
challenging, therefore the use of neural networks can be used.

Our agent will use this principle to apply the reinforcement learning. The state of the environment
is taken and changed by the action produced. The agent will now have a new state.

3.4 Genetic algorithms

Genetic algorithms are optimization methods which are inspired off of biological systems such as
evolution [11]. Over a number of generations encoded information (genotype) will be changed (mutated
), where this change is measured via a fitness function. If the mutation has helped the overall goal
then it will get a high fitness and replace other genotypes within the population.

An approach to evolutionary strategies is to generate the weights and biases via a Gaussian distri-
bution within a one-dimensional array. Each generation will allow mutation of these values. Mutation
functions fit Gaussian noise on top of the current encoded data, which alters the operation of the
neural network when applied.

One optimization approach uses a Microbial algorithm that generates a population of Gaussian
distributions and trials each of them in a tournament against one another. The winner overwrites the
loser [12]. Particle Swarm optimization uses a method inspired by particle physics. When particles
are energized through heat and cooled slowly, they move back into place better than if called quickly.
This theory applied as a genetic algorithm allows sub-optimal solutions to move away and trial new
solutions [13].

The optimization of the agent can be achieved by implementing evolutionary strategies to guide
training towards a solution.

3.5 Evaluating performance of robots on terrain

It is important to be able quantify an agents’ performance across trials. Current research in rough
terrain robotics has used physical attributes such as the coefficient of friction and slippage plotted
against the climb [14].

Figure 5: Figure Taken from a 3D plot of the simulated paths for a moon rover [2] The z-axis shows
a prominent climb on map 1 and map 3.

Studies [15] have measured Locomotion performance based on several values, including slippage,
required torque, and minimum friction coefficient. These metrics create an overall score, plotted
throughout each trial. µ represents the friction coefficient needed for tangential (R) and normal (N)
force with (r) given by the radius of the wheel with torque (T ).

µneeded =
R

N
=
T · r
N

(3)

Slippage consumes energy without making the robot move forward. Slippage was calculated using
the encoders on wheels. Distance is calculated using the following equation which uses encoder values.
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The wheel encoder (∆coder) is used and multiplied by the circumference of the wheel (2 · π · r). This
divides over the pulse/turn multiplied by the gear ratio.

Distance =
∆coder · 2 · π · r
Npulse ·Rgearbox

(4)

The slippage is the difference of ground truth and wheel odometry [15]. These factors form a Max
and Min G score. Both robot robots could provide enough torque, but that does not mean equal
performance. The G score is taken from all the G values, calculated from the torque needed. These
attributes are easily calculated in simulation but would be harder to find on a physical robot. The use
of gyroscopes and accelerometers are potentials for a substitute. There is also access to Vicon tracking
which would allow 3D generation of the robot. This would allow us to quantify these attributes.

3.6 Sensors

Terrain mapping sensing can take many forms. One study used a lidar sensor that would read at four
layers to construct a world model. This model creates a 3D perception allowing a hexapod robot to
predict movement [16].

Optical flow uses the vectors between pixels in two images taken one immediately after another.
This can be used for optical flow alone [17]. Optical flow can also be used to calculate obstacles
and swerve an agent away from the obstruction via depth estimation maps [18]. This same depth
estimation method was achieved using a convolutional neural network and the Canny edge detector
and morphological operators [19].

Depth perception via stereo imaging is another method that requires less training. A hexapod
robot used this method with six legs to predict stable movement over uneven terrain. This prediction
method was accurate [20].

Figure 6: Figure showing Weaver the stereo vision hexapod. The ground is uneven for all legs, therefore
the agent must adapt across all legs.

3.7 Contributions to the field

Self preserving robotics are important for remote locations such as planetary exploration, or hazardous
locations on earth like nuclear reactors. The preserving of autonomous robotics will save money as
well as prolong the lifespan of the agent [21]. Our approach will be using computer vision techniques
to evaluate terrain and make safer and easier path decisions. Our design will also be implemented on
a cheaper design chassis, aiming to bring down the overall cost of robot development.

4 Requirement analysis

Existing robotic solutions have not combined bio-inspired chassis design with reinforcement learning.
This project will use a physical robot platform and a simulation of this platform for the gathering of
data.
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4.1 User Needs and ideal features

The agent will need to learn how to recognize the differences between rough and smooth terrain based
on visual information and furthermore learn how to traverse it. Ideally, the physical robot will use its
back actuator to improve its ability to climb over terrain.

The agent will need to understand its limitations and not attempt routes that it will get stuck
on. Ideally this will be demonstrated on a physical robot but, if time pressure prevents this, it is still
essential the algorithm works in simulation.

4.2 Limitations

This project does not intend to create a robot that can climb any terrain. While the Wheg design will
improve the robot’s climbing ability, it will not make it impervious to the laws of physics!

4.3 System overview

4.3.1 Simulation and application of the Robot

The agent will be evaluated in an environment, where we give it a target location and it must avoid
rough terrain to get there. These constraints will be applied by calculating energy consumption.
Within an environment there can be dangers, which we will simulate using sea and snow (suggesting
the ground is too high) – entering these regions will result in 0 fitness. Using a neural network with a
visual representation and vector as an input layer. The output will be a left, right, forward command.
When we deploy this on the robot, we will most likely use a depth camera.

4.3.2 Robot platform

The robot chassis will incorporate a wheg design. This design will need to be able to climb over
terrain while maintaining stability. The Whegs will be 3D printed, so must have a diameter smaller
than 200 mm due to the printer capacity. Current designs typically use claw-like hooks on the whegs.
This design is limited on specific terrains due to it not being able to reverse.

The main chassis of the robot will use the suspension system shown in figure 7 so that a higher
incline on one extremity does not tilt the overall robot. This design was inspired by a Tamiya radio
controlled car [22].

(a) Neutral position (b) Activated position

Figure 7: Figure showing the movement of the suspension system design moving over hardware. This
uses a single spring shock absorber per Wheg.

In terms of back and neck actuation, we will need a pan and tilt style mechanism where the front
of the robot chassis will pan left to right, to improve turning left and right within an evironment. The
tilt will be up and down on the axis of gravity acting as a back. A bend in the back will redistribute
weight – the exact process applied in the cockroach research [8].
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4.4 Programming languages

There are numerous programming languages which could be used for the simulation and robot com-
ponents of this project. Ideally, the language I use will be is suitable for both.

Languages that are particularly well-suited to working with hardware include C++ and Python.
Arduinos use a version of C++. This can be quickly booted up and execute code sooner due to

storing it in binary format. This method is more complicated for computer vision and machine learning
tasks than simpler languages such as Python.

Python is a high-level language that abstracts away from syntactic detail compared to other lan-
guages. This design makes it slower at execution but has a wide ecosystem of machine learning tools.
These tools are written in C++ as Python is slow, however, Python can combine them without a
significant loss of time.

When Python deploys on hardware, there are different methods to undertake. One of which is
circuit Python as a Micro-controller, where a small Micro-controller compiles to work as an Arduino
but using Python. This is found on the Raspberry Pi Pico, Adafruit feather and Microbit. This
approach overcomes speed and complexity issues; however, these boards typically have a low amount
of memory. On the higher end is the Jetson, a Nvidia-developed board design for machine learning
tasks. These are heavily used within brains on boards projects.

In this project I will use a Raspberry Pi. These are low-cost computers which have hardware access
through GPIO pinouts and that run a Linux-based operating system. Linux is a good platform to
do machine learning as there is plenty of library support. These are typically more expensive than
Arduinos, but still much cheaper compared to higher specification models such as the Jetson. Though
slower at booting than the other micro-controllers listed, it will provide the machine learning tools
required for the project.

5 Project Plan

Figure 8: Timetable of development displayed as a Gantt chart

5.1 Phase one simulation

Phase one will focus on developing the navigation methods and a virtual environment to test within.
This phase is critical for the project as simulation can test concepts more quickly and cheaply than
physical robot testing. We will use the Python noise generation library to develop a 3D map of the
terrain.

5.2 Phase two simulation trials

The deployment of the simulation will test the theory of using vision to exploit navigation over rough
terrain. The agent will need to pick the most accessible routes which minimize the overall energy
consumption. There are multiple ways of testing this concept.

5.3 Phase three building of physical robot

To understand whether or not this concept works in practice, we must try it on a physical robot. The
real world has many more variables which affect the performance of algorithms. Lighting, colour, and
shade can have significant effects on the way the robot perceives the environment. We will build the
robot chassis from lightweight aluminum servo apparatus, and 3D printed Whegs. It is essential that
this design can successfully climb over terrain and can travel in both directions. We will test this using
a simple remote control. Once we know the physical limitations, it can help us design the testing
environment.
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5.4 Phase four applying simulation on the physical robot

The working reinforcement learning algorithm will deploy on the physical robot. This will test whether
we can cross the “reality gap” and determine whether the algorithm functions with the real-life back-
ground noise.

5.5 Phase five evolving back movement

Evolving back movements is not an essential feature of this project but, it will significantly improve the
agent’s ability to climb. If there is time, this will be trialed using a reinforcement learning approach
to help redistribute weight, thus improving the climb.

6 Methods and Preliminary Results

6.1 Simulation

We set up a Python simulation by generating a 2D map using Perlin noise, seen in figure 9. Perlin
noise is a type of gradient noise commonly used to procedurally generate terrain [23] where the value
of the space between two points changes smoothly. A grid of (n) dimensions is created. Each index is
assigned a random vector, where the dot product is calculated, which allows interpolation to generate
noise.

Figure 9: 2D simulation plot of a 3D terrain. Random generated points are shown to show the position
of agents and rewards.

The smoothstep function represents a sigmoid-like interpolation. The persistence, octaves, and
lacunarity are all altered via parameters in the world creation function. The octave is generate via
a combination of frequency-amplitudes. Each octave adds a layer of detail to the world, where the
contribution of each octave is defined by persistence. The lucunarity defines how much detail is added
or removed at each layer. This function formed a map held as a two-dimensional array representing
terrain heights numerically.
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In such simulations, we can find how far a point is from the start position and the terrain steepness
(gradient) at any point. The energy consumed (E) by a robot in a given trial is denoted by the number
of steps taken (S) and the accumulated terrain value of each place (P ). This terrain value is the step
S up, down, or across from the current height. The Manhattan distanced is used as a measure of how
far the agent has travelled. This which was picked in place of the euclidean distance due to increased
accuracy with high dimensionality [24].

Energy = (| x1− x2 | + | y1− y2 |) ·
S∑

i=1

(Pi) (5)

6.2 Robotic hardware

Throughout the initial testing, I developed three Wheg designs and evaluated two of these on a physical
robot. In the first Wheg design shown in figure 10, each spoke had a single claw which would power
more climb.

Figure 10: Initial claw design with 4 claws for stable rotation.

However, this design would struggle to reverse so I, instead, developed the reversible claw design
shown in figure 11.

Figure 11: Reversible claw design using a tri-claw system for strength. The 4 claw stable rotation was
replaced as this design had less gaps thus making it naturally more stable.

The hardware will use light Aluminium servo parts which are typically used in biped robotics and
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can be purchased cheaply on the internet. The design will allow rotation servos as the back and neck,
alongside continuous rotation servos for the Whegs.

7 Supervisor meetings

7.1 13/10/21

Discussion on subsections missing from our initial draft, areas of research we should investigate and
how to improve the simulation method. We need to research more about bio-inspired robots like what
we are designing and show more figures in general to the papers we have referenced and reviewed.

7.2 27/10/21

We discussed how we will test the agent. Two main methods came up which was finding the highest
point and making the most energy efficient path there or being set a vector and moving to it while
avoiding obstacles. We looked at a paper on ants and trap avoiding which tied into our bio inspired
research. Changes were suggested and made in the report. A discussion on sensors on the physical
robot and what will work the best happened.

7.3 10/11/21

Discussion over Max G score and how it ties in with the calculation of terrain. Further discussing
Perlin noise and how best display my simulation work within the report. We then spoke about the
next stage which was to get the simulation agent working.

8 Appendices
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Bio-Inspired Robotic Navigation On Varied Terrain Proposal

Dexter Shepherd [candNo: 215819]
Supervisor: Dr James Knight

November 10, 2021

1 Introduction

This dissertation studies autonomous robotic navigation through localized decisions based on previous
experience. Nearly all organisms are limited at some point when it comes to movement. An octopus
can fit through an aperture that is bigger than its beak [1]. A person can climb over rocks, but only
if they have grip points for hands and feet. These environmental barriers define conditions to an
organism’s ability to traverse across it. When a path looks too arduous, we will often choose a more
accessible route if possible.

These constraints comply with robotics also. Consider a Mars Rover over 395 million km away from
the nearest person, if the Rover were to get obstructed there would be no one to recover it. In addition,
it takes 181 seconds for a signal to get from Earth to Mars; thus, real-time control over changes in
an environment will have taken effect by the time the signal arrives. A robot to self-preserve, like an
organism, will need to know its limitations and not attempt tasks of movement outside these physical
constraints. [2]

When deciding on routes, there may be the scenario that all paths are within the constraints. Some
are simpler to navigate through than others. The agent will need to pick the option which requires
the “least” effort. The best-case scenario is defined by the level of complexity of movement necessary
to overcome the obstacle.

We will build an agent to perform this task by using computer vision techniques, which forms a
prediction on the best route to take via a clock-face prediction method. This chassis will have a back
actuator, stabilizer and neck actuator. Once attempting the terrain, the robot will need to use its
chassis features to help it navigate over the landscape.

2 Aims and Objectives

Our aim is to make an explorer robot which navigates around terrain autonomously and avoids rough
or potentially dangerous terrain.

• Research and evaluate current terrain navigating robotics

• Improve the chassis of current wheeled and Wheg robotics

• Critique current robot chassis and fix the limitations of them on our chassis

• Simulate an agent which avoids rough terrain when exploring

• Explore a range of computer vision techniques and research which one will be most effective for
this task.

• Implement the simulation on an explorer Wheg robot

• Conduct real world testing
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3 Relevance

Robots being aware of their own limitations shares relevance with many aspects of Computer Science
with AI. On the theoretical aspects it incorporates intelligence in animals and the cognitive science of
perception of information. On the technical side we are exploiting computer vision techniques, neural
networks and evolving systems.

The project links to my JRA research where I was evolving obstacle avoidance. This project is a
step further where we are not only avoiding obstacles, but avoiding challenging terrain when there is
an easier option.

4 Resources required

A chassis using continuous rotation servos will be required. This will run using the Raspberry Pi.
Access to a 3D printer is imperative so the prining of Whegs can take place.

5 Weekly timetable

Figure 1: Typical week of lessons

References

[1] James B. Wood and Roland C. Anderson. Interspecific evaluation of octopus escape behavior.
Journal of Applied Animal Welfare Science, 7(2):95–106, 2004. PMID: 15234886.

[2] Tamir Blum and Kazuya Yoshida. Ppmc rl training algorithm: Rough terrain intelligent robots
through reinforcement learning, 2020.

2



1 #noise generator for simulation plot

2 import noise

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from mpl_toolkits.mplot3d import axes3d

6 import random as rnd

7 import copy

8 from matplotlib.collections import EllipseCollection

9

10 SIZE =50

11 def generateWorld ():

12 shape = (SIZE ,SIZE)

13 scale = 100.0

14 octaves = rnd.randint (2 ,20)

15 persistence = 0.5

16 lacunarity = 2

17

18 world = np.zeros(shape)

19 for i in range(shape [0]):

20 for j in range(shape [1]):

21 world[i][j] = noise.pnoise2(i/scale ,

22 j/scale ,

23 octaves=octaves ,

24 persistence=persistence ,

25 lacunarity=lacunarity ,

26 repeatx =1024,

27 repeaty =1024,

28 base =42)

29 world=world *100 #normalize numbers

30 world=world.astype(int)

31 print("Octaves:",octaves)

32 return world ,shape

33

34

35

36 def pickPosition(terrain ,value ,deny=[], LBounds=8,UBounds =4):

37 current =-100

38 cords =[0,0]

39 deny.append(cords)

40 while cords in deny:

41 while current <value -LBounds or current >value+UBounds:

42 cords=[rnd.randint(0,SIZE -1),rnd.randint(0,SIZE -1)]

43 current=terrain[cords[0],cords [1]]

44 return cords

45

46

47 #canReach will make sure the problem is solvable

48 def canReach(terrain ,start ,goal ,endmarked =[[ False for i in range(SIZE)] for j in range

(SIZE)]):

49 #check whether the bot can reach the other

50 #expand out from end and make paths

51 y,x=start[0],start [1]

52 val=False

53 if terrain[x][y]!=-1 and not endmarked[x][y]:

54 endmarked[x][y]=True

55 if x-1>=0:

56 val=canReach(terrain ,[x-1,y],goal ,endmarked=endmarked)

57 if x+1<SIZE:

58 val=canReach(terrain ,[x+1,y],goal ,endmarked=endmarked)

59 if y-1>0:

60 val=canReach(terrain ,[x,y-1],goal ,endmarked=endmarked)

61 if y+1<SIZE:

62 val=canReach(terrain ,[x,y+1],goal ,endmarked=endmarked)

63 if x==goal [1] and y==goal [0]:

64 val=True

65 return val

66

67

68

69 #getBestRoute will be used to measure how fit an evolved route is

70 def getBestRoute(terrain ,start ,end):
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71 #find the least cost route from A to B

72 #return metrics

73

74 return []

75 def expand(terrain ,Map ,start):

76 for i in range(len(terrain)):

77 for j in range(len(terrain[i])):

78 if terrain[i][j]<-5:

79 Map[i][j]=-1

80 elif [j,i]== start:

81 Map[i][j]=0

82 else:

83 Map[i][j]= terrain[i][j]+ getDist ([j,i],start)

84 return Map

85

86 def getDist(start ,end):

87 d1=(( start[0]-end [0]) **2 + (start [1]-end [1]) **2) **0.5

88 return int(d1)

89

90 def readIm(r=5):

91 #read the ground around the agent at a radius of i

92 pass

93

94

95

96 while True:

97 #generate the world terrain

98 world ,shape=generateWorld ()

99 #randomly pick a start position

100 startPos=pickPosition(world ,4,LBounds =6)

101 vectors =[(1 ,1) ,(1,0) ,(0,1) ,(-1,-1) ,(-1,0) ,(0,-1) ,(-1,1) ,(1,-1)] #possible moves

102

103 #print(canReach(Rmap ,startPos ,endPos))

104 im = plt.imshow(world ,cmap=’terrain ’)

105 cb = plt.colorbar(im)

106 plt.setp(cb.ax.get_yticklabels ([-1,0,1]), visible=False)

107

108 plt.show()

109 """

110 lin_x = np.linspace (0,1,shape[0], endpoint=False)

111 lin_y = np.linspace (0,1,shape[1], endpoint=False)

112 x,y = np.meshgrid(lin_x ,lin_y)

113 fig = plt.figure ()

114 ax = fig.add_subplot (111, projection ="3d")

115 ax.plot_surface(x,y,world ,cmap=’terrain ’)

116

117

118 plt.show()

119 #"""

120

121 """

122 maxPath =30

123 pathx =[]

124 pathy =[]

125 current=startPos.copy()

126 energy =0

127 last=startPos.copy()

128 for i in range(maxPath):

129 v=rnd.choice(vectors)

130 pathx.append(current [0]+v[0])

131 pathy.append(current [1]+v[1])

132 last=current.copy()

133 current [0]+=v[0]

134 current [1]+=v[1]

135 if current [0]>=0 and current [0]<len(world) and current [1] >=0 and current [1]<

len(world [0]):

136 if world[current [0]][ current [1]]<=-6:

137 print(" water")

138 else:

139 climb=max(0,world[current [0]][ current [1]]- world[last [0]][ last [1]]) #

non 0 value of total climb
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140 energy +=1+ climb

141

142 print(" total energy consumed",energy)

143 plt.plot(pathy ,pathx)

144 #"""

Listing 1: Simulation noise generation code
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