
University chat bot project proposal 
 

By Dexter R Shepherd 

  



Contents 
Overview ................................................................................................................................................. 3 

Market Research ..................................................................................................................................... 3 

Technicalities........................................................................................................................................... 8 

System requirements .......................................................................................................................... 8 

Potential security threats .................................................................................................................... 8 

Grammar and spelling ......................................................................................................................... 8 

Language ............................................................................................................................................. 8 

Test plan .................................................................................................................................................. 8 

Bot code .............................................................................................................................................. 8 

Client to Server and Server to Client ................................................................................................... 9 

Admin side .......................................................................................................................................... 9 

Development......................................................................................................................................... 10 

Natural language processing ............................................................................................................. 10 

Organization of data ......................................................................................................................... 11 

Data structures .............................................................................................................................. 11 

Training in the data ....................................................................................................................... 13 

Saving data ........................................................................................................................................ 13 

Managing data .................................................................................................................................. 14 

Grammar and spelling checks ....................................................................................................... 14 

Vague questions ............................................................................................................................ 14 

Bot learning ................................................................................................................................... 15 

Client side and Server side ................................................................................................................ 16 

Testing ................................................................................................................................................... 19 

Bot code ............................................................................................................................................ 19 

Client to Server and Server to Client ................................................................................................. 20 

Admin side ........................................................................................................................................ 21 

Deployment of the system .................................................................................................................... 31 

Trials .................................................................................................................................................. 31 

Set up ................................................................................................................................................ 37 

Legal .................................................................................................................................................. 37 

Future ideas ...................................................................................................................................... 38 

Applications of software ............................................................................................................... 38 

Algorithm changes ........................................................................................................................ 38 

References ............................................................................................................................................ 38 

 



Overview 
A problem for students is having too much information and recourses thrown at them, and not 

knowing who to turn to for information. This results in university staff having to check their emails 

all the time and answer questions over and over again. Then the same events happen with the next 

year group. This also means students need to wait for a response. Would it not be better if these 

questions and answers were written in a database and kept updated by university staff? This would 

allow students to get instant responses, and keep university staff emails free for questions which 

can’t be answered. 

This project is for a chatbot to help students with university life. This can be questions from mental 

health problems, disability support all the way to where are cheap places to shop. When there is an 

unknown response, this gets added to a list of questions the university can keep updated with 

responses. This project will help students manage day to day university life, as the change from living 

with parents to being independent can be a struggle. It is also helps university staff as they will 

receive less emails.  

The theory of this project could be rolled out in other applications, indeed many companies use this 

approach for their own services [1].  

Market Research 
There are many systems like this currently out there. I looked into the Spotify chatbot which helps 

users find out information via a friendly non-human interfaced. I also looked into CleverBot which is 

a self-learning AI. It learns off of how others interact. I wouldn’t be going that far with this version of 

the software.  

I deployed a survey to find out how important the issue I am solving is, and whether people think my 

solution is effective and useful. 

 

The other was a medical student in their 6th year. My data was gathered from students, mainly first 

years.  



 

40% of students do not know or not always know where to go for information. When looking at 

individual trends it seemed that the higher the year you were, the more likely you were to know 

information.  

 

 

The 6 responses were as followed: 

 



 

The issues mainly seem to be mental health issues, where to go and what to do, sometimes involving 

courses. This application would aim to deliver this information quickly and accurately.  

 

 

 



The key issues are general information about university, both life and academic. The bot would be 

there to provide information in a friendly way, quickly and effectively. The answers need to be short 

but insightful, and could forward people using links to pages like Sussfessions. 

 

After deploying question 5 I realized it was down to interpretation. Finding out information using a 

bot could both be considered talking to someone and finding out information yourself. As we see it 

is a 60% and 40% split it will not impact my research anyway. 

 

We got 90% of people saying they would use this application out of the study of students. This is a 

strong result in favour of this application.  



 

The first response raises some good issues, hence the bot should only be here to provide guidance 

which may involve directing people to the student life centre for mental health support. He privacy 

concerns are not an issue at this stage, as data is managed in an input and output way. However, the 

element of self-learning and patching information together is not a bad idea. Perhaps even an 

emailing system which emails information it thinks you will like. Keeps students up to date with 

information they will like. Maybe even the use of cookies. This is just an idea for a future system.  

 

Where to find information are popular choices with the results. The least popular are career advice 

and mental health support. This makes sense as the bot cannot truly feel in the way a human does 

hence the advice will be insincere. But for general information the bot is popular.  



Technicalities 

System requirements  
The system would need constant running and a substantial amount of RAM to hold the data. If the 

Server uses Ubuntu, the RAM needs 1024MB of RAM for the OS [2], and for a big data base it would 

need up to 4GB of RAM. I estimate this would be fine. Multiple cores would be required for multiple 

processing of request and processing. If many people are to use the system at one time, potentially 

the server will need more RAM and need to monitor this. If the RAM gets too big, then the server-

side code will need to alert people that the server is too busy currently. Being the design is efficient, 

this will not be a problem.  

Potential security threats 
The main potential security threat would be trolls. Damage to the system wouldn’t be inflicted, but 

the staff who monitor responses would get many spam responses if people kept asking “stupid” 

questions. This could be avoided through using Sussex emails to sign in and all responses are 

monitored this way, however this would then stop non students finding out information about the 

university. Another potential solution to trolls is to ban IP addresses on devices if they have 

spammed the system with inappropriate content. There does lie the underlying solution of just the 

monitoring staff deleting spam when it arrives. The AI does not learn naturally therefore University 

reputation remains untarnished if spammed with bad replies. It is down to the monitoring staff to 

add it for the rude responses to show up.  

Grammar and spelling 
There will be potential issues with grammar and spelling. Universities within the UK are very diverse 

and English is not the first language of everyone. Being this application is accessed through mobiles, 

much of the spelling issues will be solved through auto correct, but  spelling and grammar checks 

could be implemented into the software to make sure everything is correct. The software can also 

take extra care when processing information, if it is only one word out then it could still go with that 

option.  

Language 
The plan is to use Python due to the large amount of machine learning support and support for 

dynamic variables. Other languages like Java and C are not as helpful with non-fixed sized arrays. 

Python supports object oriented formats of code as well as event driven making it perfect for this 

project.  

JavaScript will be used on the client side in order to communicate with the AI, which will be server 

side.  

Test plan 
The following tests are designed to know when the system works at the different areas of 

development 

Bot code 

Test No Test Expected outcome 

1 AI splits a paragraph down into manageable 
sentences and performs spell check. 

An array of sentences made 
from the paragraph, with 
spelling mistakes corrected to 
a good degree. 



2 The AI splits a sentence into a statement or a 
question or neither 

If neither nothing is returned. 
If a question it will try and find 
an answer. If a statement it 
will thank the user for their 
feedback. 

3 A statement is saved It appears within the 
statement folder in the json 
format. 

4 A question which has been added will find a 
response.  

The result set to that question 
is outputted 

5 A question is not found but there are saved 
questions about that topic. 

The system will add the 
question to a confused file, to 
be added by the admin at 
another point. Then will find 
something like that and state 
“I am not sure at the moment 
but here is something similar”.  

6 A question which has never been asked and is not 
entered 

The system will add it to the 
confused file and apologise for 
it does not have an answer at 
this point. 

7 Data already in the confused file is added The data will not add it again 
but will increase its priority 

8 A paragraph is entered with a vague sentence 
following another sentence. “what mental health 
services are there? Where are they” 

The paragraph is split, and the 
previous topic remains the 
current topic to help find out 
what the second sentence 
means. “where are they” + 
“mental health services” 

9   

Client to Server and Server to Client 

Test No Test Expected outcome 

1 The client connects to the server A test code is sent and pinged 
back 

2 The client sends the text input out to the server A response is sent back based 
on the input 

3 The client stores the subjects of the past and the 
response. 

Local variables are shown in 
the browser console. 

4 The client responds negative feedback to a message The system receives 
information about what is 
wrong and it adds it to be 
added in the confused file. 

Admin side 

Test No Test Expected outcome 

1 Makes user sign in with correct credentials.  If the password and username 
is wrong then it returns wrong. 
If not then it lets the user in. 

2 The user can receive the top amount of questions 
to add.  

The user sends a request via 
the GUI and gets a response 



3 The user can answer questions. The question and answer are 
submitted and trained into the 
system. 

4 The user disconnects Their IP is no longer saved in 
the server side code and they 
will have to re-enter their 
password and username. 

5 The user can delete responses which are incorrect The user selects delete and it 
no longer appears in the data. 

 

Development 

Natural language processing 
For the splitting of language I have two options: To make a complex graph data structure system to 

split sentences down to meaning, or use a python library which already processes information. I 

downloaded the NLTK library [3][4] which tokenizes words in order to develop meaning of 

sentences. 

 

The above shows a screenshot of the library splitting information down into tokens. “NN” represents 

the subject. What the system will need to do is split up a sentence into relevant information. Using 

the NLTK library documentation I was able to decide upon the rules which build up significant nodes 

to the language. “where is the coop” would be “where is” “coop”. Alternatively with a more complex 

sentence we would have “who do I talk to if I am depressed” which would break down to “who do” 

“I talk to” “I am depressed”. The system will need to take the meaning, in the case of our second 

example is the person to talk to involving depression, and its being queried with “who”. Taking a 

sentence like “who do I talk to about mental health”, or “who do I go to for mental health” mean the 

same thing.  

 

Here we see the algorithm splitting down two different sentence filtering out meaning to its bare 

minimum. Below shows a series of sentences inputted (in white) and the node creation of the 

language class (in blue): 



 

Each item in the array will represent a node of relevance relating to the answer. It will find the 

meaning based on the data it has been given. Using tokens instead of words will improve 

effectiveness when finding if two sentences which are different, mean the same thing.  

 

The algorithm when searching will find that not all nodes are the same, but the only difference still 

has the tokenized similarity, therefore having a higher chance. 

Organization of data 

Data structures 
The data will be organized into .json files and when opened, into graph data structures using 

dictionaries to link vertices with edges. Data will be entered in to a “confused” file if not found in the 

data, which will be the file that the university read when adding their own answers. 

These nodes would hold different words and connect 

with a strength (which increases every time it happens) 

to either a question node or a statement. This allows the 

code to work out whether a sentence is a question. 

“what” in position 1 and “is” in position 2 is a common 

way to begin a sentence. “the” in position 1 and “is” in 

position 3 is a common way to state something about an 

object in position 2.  

For the question file it will have nodes linking to a 

response. If all the nodes linking to this response are 

matched, or similar, then the response is likely to be the 

correct outcome. The system could find the most likely, but also state “this is how questions like this 

were answered” to alert the user that this is not the exact answer.  

The statement file will be slightly different where the nodes will attach to each other rather than to 

any specific answer. This is to work out associations of information. “the shop is expensive” will need 

to convert down to “shop” and “expensive”. This will build up the more this happens. Then when 

this graph is processed it will show a strong connection between these two, alerting the university 

that most people find the shop too expensive.  

By splitting out the irrelevant nodes and only keeping subjects I am able to get information which is 

relevant. 



 

It associates the information which is relevant in the array seen, and the nodes would then all be 

connected together in the graph. It will then return the message “thank you for your feedback” as 

there is no other way.  

I write some test code which would ask me to clarify each item in the confused file. It would then 

add this to the question graph and save it: 

 

 

Within the data it saves all the nodes from the sentence pointing to the data. Using the graph class I 

currently made we see many redundancies in the data. This will slow up memory eventually, so I will 

need to review the graph code. At this time it works and that is the main importance. It was further 

removed from the confused data. 

 

If I have taught the AI something but it is not in the data exactly, it will respond with a message like 

the following: 

 

The data learned that “mental health” and “where” links strongly to the answer given. The extra bits 

of information made it so that it was not exact, but was close. I could allow the user to give feedback 

on whether that information is correct. If it is then it can adjust the data to link to it. If not then it 

can add it to the confused file. The data regarding the question and answer will need to be stored 

within the client bot and not the main bot. 

 



Above shows the percentages as decimals on a sentence. I trained it on “where do I go for mental 

health support”. This is why the second question only has a probability of 0.6. This method prevents 

confusion with similar sentences. 

 

 

If two questions are the same but slightly different in subject, the system responds well by assigning 

a higher worth to subject words than to other words. 

Training in the data 
The data for the question or statement analyses will be pre trained into the system. This will mean 

that the system will need a wide range of sentences to be trained on in order to be accurate.  

The data for questions will be trained in by the university, and kept updated by the university. 

Question data can only be accessed for reading by the user, and accessed for writing to by the 

university. This keeps the integrity of the data. 

Statements can be written to by the user. It records information so the university can learn from it. I 

have written code here to show the graph in text form every time something is added: 

 

It takes in the input and links it all with feedback. This means that the highest connections between 

feedback and nodes, and the connection between that node and other nodes will signify whether 

something is significant enough for the university to take action.  

Saving data 
The data saving will be saved in a .json file, and retrieved into the graph based on the filename. The 

sentence graph, question graph and statement graph will all be saved into different files. It will have 



a simple start up function which retrieves the current data and saves new data as it goes along. If the 

datafile does not exist the function will create an empty file to read from.  

 

The above two functions manage the loading and saving of the memory. It is saved in a dictionary 

format, and opened into a dictionary structure. As the graph data structures are saved as 

dictionaries, json files are perfect. The only concerns I would have is large amounts of data slowing 

down processing, or potentially running out of RAM. Future versions may need a better method of 

saving data such as using a folder system branching off vertices and saving edges as text files. This 

would only open up relevant data. This is something to consider later down the line in development.  

Text files rarely take up many GB of data, so as long as the operating system used to host the 

software is reasonable like Ubuntu which uses a low amount of RAM [2] the system should function 

correctly. 

An alternative saving pattern which will work better will be the bot server saving every X minutes. 

This will stop the slowdown of processing for the user and save when necessary.  

Managing data 

Grammar and spelling checks 
Using libraries, I can implement a spelling and grammar engine which should improve accuracy when 

messaging the bot. The main algorithm is set up for sentences, therefore the grammar system will 

need to split up sentences using full stops, question marks and exclamation marks. This would then 

filter each sentence through one by one and form a paragraph answer.  

 

The spelling and grammar will convert the text to its most correct form and split it to sentences to be 

individually processed. 

Vague questions 
In human conversation we are able to jump from subjects. “I am struggling with essay writing. 

Where do I get help?”. The second sentence would be confused as to what is being said. Having a 

subject save method will be useful, where the last sentence to be processed will keep its subjects 

stored. When the system gets confused because there are no subjects, it will take the subjects from 

before.  



 

If there are subjects but it cannot find anything like it, it will look for an exact response with the old 

subject. If no exact response is found then it will respond with a “I’m sorry” answer, and try find 

something similar to show the user. If nothing is found then it will just have an apology answer.  

 

I started doing the sentence analyses to determine whether a word was a statement or a question. I 

was not entirely accurate. I worked on improving the training data but still was not accurate. I made 

a more accurate version of this code before but it was using a more complex data structure. I could 

potentially add a trainer of wrong sentences, or indeed allow the admin to keep up the training. I 

was looking at it from a stupid angle. I am trying to get every word to point to whether a sentence is 

or is not. Using the comparison method from the sequencer library I could improve the algorithm. 

The graph method just wasn’t working.  

 

The accuracy improves with this new model. I implemented this into the main bot object. 

Bot learning 
The bot would enter all unknown questions into a file and await the person who monitors the 

system to add an answer. This could be a member of the student union. They will the be able to type 

an answer to a question. There will need to be a method to remove information, and also add 



information which deletes after a certain date. This is so information which does not need to be 

there for long periods of time, such as temporary events. If information changes, the staff can delete 

the current information and add new. This will be managed through a separate bot client called an 

admin Bot Client. It will be connected to via an alternative method. 

 

I set up the file to be a database, and wrote a class method for this. When a question is not found, it 

will add it to the database, and if it already exists it will increase the priority of that question.  

Client side and Server side 
The client side and server side will be managed by JavaScript and Python respectively. The JavaScript 

will take input from the browser with a text input box, and then send this data to the server listed. If 

there is no response then it will need to output the server is not available at that time. If there is a 

response, then it will wait for a data transmission back and then display it on the browser.  

After a while of setting it all up, I made a server using Ubuntu Server and Apache. I hosted a website 

on the server, and Python code using the Websocket library. I then used Javascript client side to 

connect to the Python server side and echo responses back to the browser. This is the fundamental 

structure that this application will use for input and output. Validation of text will be done client side 

to save server processing time. The server will take in text, form a response and return it.  

I installed the necessary libraries and data onto the server, and adapted the code to work with the 

new server side processing code. It would wait for a user request on port 50007 and return a string. 

Then on 50008 it will wait for admin response. The testing of the client worked. 

 

The issue is now updating the algorithm to work better with the stripping down of language. After 

going back and sorting that out the algorithm has been working better. I went on to develop the 

admin side of the computer system.  

On the admin side you will have to sign in, all features are closed until the user signs in with the 

correct credentials. The username and password is currently set in the software, but I will change 

this down the line and use encryption of the passwords. 



 

If the password is incorrect the server will respond with an error code and the browser will notify 

the person. 

 

The above shows the admin page once signed in. All the responses which need to be added show up, 

and the user can click them to get a dialogue box and add responses. They can also right click to 

delete them from them from the system. This will be used if someone enters a silly response. 

I then proceeded to add options to add and delete.  



 

 

 

 

The image above shows the client side where the first time the bot did not know, but the admin 

added it and the next time the person asked “where are you from” it knew.  

The final addition that I made to the client side was a feedback option which.  

 



You click the link in the comment below, and it comes up with a pop up allowing you to make a 

choice. Negative feedback will send the comment to the confused section. Positive feedback will 

work differently where the answer will be added for the question.  

Testing 

Bot code 

Test 
No 

Test Outcome 

1 AI splits a paragraph down 
into manageable sentences 
and performs spell check. 

 
The sentence is broken down, and due to people having 
spell check on their phone the spelling engine was 
removed as it was unnecessary processing.  
PASS 

2 The AI splits a sentence into 
a statement or a question or 
neither 

 
To a reasonable degree of accuracy PASS 

3 A statement is saved It saves to a json file, and is loaded back in once I close 
the program and open it again. 
PASS 

4 A question which has been 
added will find a response.  

 



 
As you can see, my response is saved to this answer and 
similar meaning responses will return the answer.  
PASS 

5 A question is not found but 
there are saved questions 
about that topic. 

 
PASS 

6 A question which has never 
been asked and is not 
entered 

 
The information is added to the confused file, as it 
appears in the admin side.  
PASS 

7 Data already in the confused 
file is added 

The data will not add it again but will increase its priority 

8 A paragraph is entered with 
a vague sentence following 
another sentence. “what 
mental health services are 
there? Where are they” 

 
PASS 

Client to Server and Server to Client 

Test 
No 

Test Outcome 



1 The client connects to the 
server 

 
The ping was “hi” and got the response “hello”. There is a 
bug to do with multiple responses which will need to be 
fixed. That’s is separate to this test. 
PASS 

2 The client sends the text 
input out to the server 

 
The response is sent back 
PASS 

3 The client stores the 
subjects of the past and the 
response. 

Local variables are shown in the browser console. 

 
The subjects are being picked out 
PASS 

4 The client responds negative 
feedback to a message 

After inputting information it does not know, I was able 
to view it in the admin mode which takes from the 
confused file. 

 
And in admin mode: 

 
PASS 

Admin side 

Test 
No 

Test Outcome 



1 Makes user sign in with 
correct credentials.  

 
The interface is shown and you cannot click anything 
until the sign in is correct. 

 
 

 
Once you sign in it takes you to the main content 
PASS 



2 The user can receive the top 
amount of questions to add.  

 
PASS 

3 The user can answer 
questions. 

The user does this two ways. They can click on an item 
in the view mode: 

 
Or they can add it manually: 

 
PASS 

4 The user disconnects  

 
When the user has been idle for a certain amount of 
time they are removed from the approved admin list. 
They will have to re-sign in.  
PASS 



5 The user can delete responses 
which are incorrect 

 
The phrase “who is your creator” existed in the system. 

 
Then we saw that it was removed. When I tried it again 
and submitted the same thing twice I got an error 
message as expected.  

 
You cannot delete what is not there 
PASS 

 

Bot: PASS 

Client: PASS 

Admin: PASS 

All initial tests passed and work as expected with only a few issues. 

Bugs I found while testing 

ISSUE 

When adding sentences with the same output “hi”=”hello”, “hey”=”hello” , The system would get 

confused and say “something I found like” due to the number of inputs connected to the same 

answer decreasing the overall chance of being the output. This method was used as words will be 

used on many responses, whereas responses tend to be more unique. Of course, this is not all the 

time so will need fixing. 

FIX ✅ 



To fix this I would add in a validation technique. When an answer is added, if it already exists it will 

be given a count code to make it a different node. The client side will be programmed to ignore this.  

ISSUE 

Sometimes I will make a statement and it will give me a response that I have given it feedback even 

though the statement wasn’t for feedback. 

FIX ✅ 

A quick fix is to class sentence such as “hello” as questions for the sake of a friendly user interface 

and more personal user experience.  

ISSUE 

There is no way for the user to point out false information.  

FIX  ✅ 

Add a report false information which will send a report form to the admin. 

ISSUE 

There is no way to view the feedback from the user 

 

 

FIX ✅ 

Add it to the admin page, where the user can request to see the feedback from users. 

ISSUE 

I can copy and paste large sentences and break the code 

FIX ✅ 

Add validation and not allow sending of strings over a size of 500 characters. 

ISSUE 

Accidental deletion of the confused file data is irreversible without typing in what you deleted. 

FIX ✅ 



I can develop an undo button, and use a fixed size stack data structure to hold each item of data 

ISSUE 

The positive feedback does nothing. If an answer is correct the user should be able to add it 

FIX ✅ 

I can simply add the same algorithm as the admin bot to add a response. If this response is wrong 

then someone can report it as false information.  

ISSUE 

Cannot delete feedback if potentially inappropriate feedback or old feedback 

FIX ✅ 

Add a delete feedback method 

ISSUE 

The system cannot handle conjunction of sentences. “When does the library open and when does it 

close”. If there has been two separate parts of information stored for these two questions it will find 

neither due to the sequence matcher length of sentence calculation.  

FIX  

Add in a way that the nodes of the system will be split into sub sentences where if there is no exact 

response to the system, it will split up the nodes into the sub sentences and accumulate responses 

based on these inputs. If it is missing subjects in one of the sub sentences, it will look for it in the 

other assuming the subject is remaining the same. “When does the library open and when does it 

close” will split to “When” “Does” “Library” “Opens”, and “Does”, “Close”. Being both items of 

information are trained into the system, it will pick out both as “when does the library opens” and 

“does close”+”library” will get the response wanted.  

 

 



At this moment in time I have improved the algorithm from what it once was. But it still is lacking. 

Originally the code would not understand anything. Now it will respond with one of the sentences. 

 

Of course, this is not what I intended to do, but it is how it has ended up. I will have to work further 

on this and go at it from a different perspective. 

 

 

 

 

Rigorous testing 

TEST 
NO 

TEST OUTCOME 

1 What happens if I enter two 
sentences, one added and one 
not.  

 
The code copes by only responding to one, and 
adding the unknown one to the admin.  

 
Next time I enter it:  

 
The responses add up. 
I am happy with how it deals with this method. 



2 Add two same questions with 
different answers and then delete 
them 

 

 
Are both added. The normal client side finds one of 
the answers: 

 
And when deleted it only deletes one of them 

 
Ideally it would delete both, although the user 
should try not to add two messages which are the 
same. I have no desire to change this unless it 
becomes a bigger problem.  
 
UPDATE: I added a loop to the deletion algorithm, 
so it will delete all answers linked to the question. 
It became an issue when I was updating false 
information, and it kept giving me false 
information. 

3 What if I have a long response 
and I give feedback on a 
sentence.  

The code gets confused and easily breaks. This is a 
major issue which needs sorting. I could potentially 
split messages up into separate responses.  



 
This will then be more accurate deciding which 
sentence the user is referring to. Another problem 
is this… 

 
I could change the symbol in the main algorithm so 
it splits sentences using something else such as 
“$”. 

 
And that did the trick.  



 
I could add negative feedback to both of these and 
get the responses I wanted. 

 
 

After getting everything working, it then stopped working… The system lost it’s ability to understand 

information. 

 

This got me thinking whether the use of a graph could either be changed to work better, or perhaps 

thrown out altogether. This could also be to do with the checking algorithm and the language 

analyser. I got to developing a better language analyser. I improved the accuracy of the language 

analyser but still had the problem with the code not adding the new information.  After tracing 

through errors and RAM usage, I found it was all to do with the adding of new information. It 

worked, and then stopped without any changes happening. Even after deleting the data and starting 

again the problem persisted. I changed the sequence matcher code, as it did not take into 

consideration orders of sentences can change. I could add back the sequence similarity to be a 

variable on the percentage similarity overall, if I come into complications.  



Deployment of the system 

Trials 
The first trial is the alpha, where people who I know will trial out the code, and find bugs or issues 

with it. They will then submit a feedback form for me to improve the client experience. I will then 

take it to a beta trial which would mean someone else will manage the admin, and the new fixes will 

be added to the client side.  

Prior to the main testing I have set up a extreme testing approach, where I will let fellow Computer 

Science students purposely try and break my code. This is so I can fix up any weak areas of the 

program. 

 

These tests seemed to have gone well. The first student was unable to break my program. 

ALPHA  

The alpha trial was done to test out the program with untrained users. This is to find any bugs, 

security issues, and functionality problems. I set up the following interface: 

 



This uses my university’s organizational colour scheme, to match their website. The interface is 

friendly and easy to use. It provides all the information needed and some links to the SHEP social 

medias for publicity. I will also add in a link to a survey when I have made that survey.  

 

The second tester attempted to put in SQL injections, but due to the nature of the linguistic analyses 

the information was secure.  

I put out a survey and here were the results: 

 

The main testers were students but also members of the public to make sure it is usable by all. 

 

Overall people seemed happy with the project. Below shows the responses about why they gave the 

previous answer. 



 

 

 

 

The summery of these comments are that people are they like the 24-hour quick answers to save 

the time and researching. However, the negative comments are more about the lack of questions 

added, which I expected to be the case. This will be fixed when the university add all their 

information.  



 

Most people would potentially use this system.  

 

Here are a few of the comments that we got. People like the speed efficiency, 24-hour support and it 

being easier than an email. Some people are on top of things so do not need it.  



 

The comments on areas to improve were interesting. I like the idea of having a prompt of questions 

you can ask. That is something I could use within the next user interface. Some people found bugs 

which they reported at the end. The question and statement interaction will get better the more 

people ad to it, as it converts phrases added to questions that can be answered.  

 

People liked the simple and easy layout.  



 

This was confirmed in this question. 

 

There were a few errors within the code, which I got to fixing right away. 



 

People gave overall positive feedback and liked the project. I was happy with the feedback and knew 

what I had to do to get it ready for the next stage. Fix the bugs and make improvements to its ease 

of use. 

BETA 

This is to test the code after the additions/deletions made in the alpha stage have been 

implemented. It is to test out with a wider range of people. Then to gather feedback on 

improvements.  

Set up 
The system would be implemented on a server as a python file which would receive data sent from a 

client-side web application and return the appropriate response. The Python language would require 

the following libraries installed: 

• JSON 

• NLTK 

• spellChecker 

• sqlite3 

• websocket 

The file paths specified to where the passwords are kept, and where the files are kept will need to 

be changed when on a new system, for the code to work.  

Legal 
NLTK is an open source software which is distributed under the Apache license version 2.0 [5]. The 

apache licence allows users to use or modify software in their own projects.  

The spellChecker library comes under the MIT License which is another open source license for 

anyone to use. 

Python and the inbuild libraries belong to the Python Software Foundation, and are licensed under 

the License agreement for python 3.8.3 [6] where Python is made for the royalty free distribution 

world-wide.  



Websocket has demands that its own requirements are kept within distribution of the source code 

[7]. Their License will have to be appended to our own license.  

My own software licence will explain this and relinquish responsibility to the user if this software is 

misused. 

Future ideas 

Applications of software 
In the future this sort of system could be deployed further than current universities, it could move to 

schools as a parent information device. It could be used by the Army for recruitment questions. It 

could be used as an NHS 111 service and go as far to book appointments for people.  

The council could use it to gather issues in statements, and answer questions around the city. Local 

businesses could pay to be recommended. The code could be modified to allow the reporting of 

crime ad submission of evidence. 

This frame work has many applications if taken further. 

Ways to develop the framework would be to add some self-learning elements. For example making 

similarity between grammar in questions and answers to help it make more accurate responses. Also 

to find similar meanings  

The self-learning could also store data locally in cookies, and retrieve interests to promote events/ 

articles/ information related and of interest.  

Algorithm changes 
I would like to follow up this project with a more self-sufficient program which learns from it’s 

mistakes. When the user responds with negative feedback because it has found the wrong 

information, correlations as to why this has taken place should be calculated, to prevent this 

grammatical error from happening again. This would give the system its own self learning 

understanding of language and using it to improve.  

Further steps would be to find its own responses. Chat with it to learn off of people. A “gossip” bot. 

Students learn off of one another and people gossiping about what to do. A gossip bot would find 

ways in which people talk to one another, find out about what is going on and help students be a 

part of that. Of course such applications hold many problems such as trolls and personal data being 

shared, it would require quite a lot of thought to make this safe.  

References 
[2] https://askubuntu.com/questions/552095/how-much-ram-does-ubuntu-use, 2015. Ubuntu RAM 

usage, s.l.: s.n. 

[3] https://en.wikipedia.org/wiki/Natural_language_processing, 2 June 2020. Natural language 

processing, s.l.: Wikipedia. 

[1] https://www.computerweekly.com/opinion/Its-good-to-chat-but-who-to-The-role-of-chatbots-

in-digital-transformation, 2020. The role of chatbots in digital transformation. Computer Weekly. 

[4] https://www.nltk.org/api/nltk.html, 2020. NLTK documentation. 

[5] https://www.apache.org/licenses/LICENSE-2.0, 2004, Apache software License 

[6] https://docs.python.org/3/license.html, 2001, Python Software foundation 

https://www.apache.org/licenses/LICENSE-2.0
https://docs.python.org/3/license.html


[7] https://websockets.readthedocs.io/en/stable/license.html, 2013, Aymeric Augustin and 

contributors 

 

https://websockets.readthedocs.io/en/stable/license.html

